EBRSR

Chapter 10

UPPER EXTREMITY MOTOR REHABILITATION INTERVENTIONS

Marcus Saikaley BSc
Griffin Pauli, MSc
Jerome Iruthayarajah, MSc
Magdalena Mirkowski, MSc MScOT OT Reg. (Ont.)
Alice Iliescu, BSc
Sarah Caughlin, PhD
Niko Fragis, BSc Candidate
Roha Alam, BHSc Candidate
Joceyln Harris, PhD OT
Sean Dukelow, MD
John Chae, MD
Jayme Knutson, PhD
Tom Miller, MD
Robert Teasell, MD

Chapter 10: Upper Extremity Motor Rehabilitation Interventions Table of contents Key Points	4
Modified Sackett Scale	8
New to the 19 th Edition of the Evidence-based Review of Stroke Rehabilitation	9
Outcome Measures Definitions	11
Motor Function Dexterity Activities of Daily Living Spasticity Range of Motion Proprioception Stroke Severity Muscle Strength	11 15 17 21 23 24
Therapy based interventions	
Neurodevelopmental Techniques Bilateral Arm Training Exercise and Strength Training Task-Specific Training Constraint-Induced Movement Therapy (CIMT) Trunk Restraint Stretching Programs Orthotics Mirror Therapy Mental Practice Action Observation Music Therapy Technology based interventions Telerehabilitation Robotics. Virtual Reality Brain Computer Interfaces EMC Riefondbook	32 41 51 73 77 80 99 . 106 114 116 140 152
EMG Biofeedback Sensorimotor stimulation	
Neuromuscular Electrical Stimulation (NMES) Transcutaneous Electrical Nerve Stimulation (TENS) Thermal Stimulation Muscle Vibration Additional Afferent and Peripheral Stimulation Methods Invasive central nervous system stimulation	. 182 . 187 . 190 . 196
Invasive Cortical and Nerve Electrode Implant Stimulation	200
Repetitive Transcranial Magnetic Stimulation (rTMS)	. 203

Transcranial Direct Current Stimulation (tDCS) Pharmaceuticals	236 236
	236
Potulinum Tovin	
Steroids	
Cerebrolysin	
Levodopa	
Statins and Antihypertensives	254
Antidepressants	257
Central Nervous System Stimulants	261
Neuroprotectants	
·	267
Acupuncture	267
Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation	275
Meridian Acupressure and Massage Therapy	
, , , , , , , , , , , , , , , , , , , ,	283

Key Points

Bobath concept approaches and motor relearning programmes may not be beneficial for upper limb rehabilitation following stroke.

Brunnstrom movement therapy may be more beneficial than motor relearning programmes for upper limb function.

The literature is mixed regarding bilateral arm training for upper limb rehabilitation following stroke.

Bilateral arm training may not be beneficial compared to unilateral training for upper limb function.

Bilateral arm training in combination with other therapy approaches may not be beneficial for upper limb rehabilitation.

The literature is mixed regarding strength training and functional strength training for upper limb rehabilitation following stroke.

The literature is mixed regarding strength training and functional strength training for upper limb rehabilitation following stroke.

Task-specific training, alone or in combination with other therapy approaches, may be beneficial for some aspects of upper limb function following stroke.

Higher and lower intensity task-specific training may have similar effects on upper limb function.

Constraint-induced movement therapy may be beneficial for upper limb rehabilitation in the chronic phase following stroke.

The literature is mixed regarding constraint-induced movement therapy for upper limb rehabilitation in the subacute/acute phase following stroke.

Modified constraint-induced movement therapy may be beneficial for upper limb rehabilitation in the chronic phase following stroke.

Modified constraint-induced movement therapy may not be beneficial for upper limb rehabilitation in the subacute/acute phase following stroke.

Higher and lower intensity constraint-induced movement therapy may have similar effects on upper limb function in the chronic phase following stroke.

The literature is mixed regarding constraint-induced movement therapy in combination with other therapy approaches for upper limb rehabilitation following stoke.

Trunk restraint with reaching training or distributed constraint induced therapy may improve some aspects of upper limb function following stroke, but the effect of combining trunk restraint with constraint-induced movement therapy is less clear.

Stretching programs may improve some aspects of upper limb function following stroke.

Orthotics may not be beneficial for upper limb rehabilitation following stroke.

Mirror therapy on its own or in combination with other interventions can improve many aspects of upper limb function following stroke.

Mental practice, alone or in combination with constraint-induced movement therapy, may be beneficial for upper limb rehabilitation following stroke.

Mental practice in combination with virtual reality training may not be beneficial for upper limb function.

Action observation may be beneficial for some aspects of upper limb function following stroke.

The literature is mixed regarding music therapy for upper limb rehabilitation following stroke.

The literature is mixed regarding telerehabilitation for upper limb rehabilitation following stroke.

The evidence is mixed regarding arm/shoulder end-effector robotics, alone or in combination with other therapy approaches, for upper limb rehabilitation following stroke.

The evidence is mixed regarding arm/shoulder exoskeleton, hand exoskeleton, and hand endeffector robotics for upper limb rehabilitation.

Virtual therapy alone may not be more beneficial than conventional therapy for upper limb rehabilitation following stroke, however it may be beneficial for certain aspects of upper limb function when used in combination with conventional or other therapy approaches.

The literature is mixed regarding brain-computer interface technology for upper limb motor rehabilitation following stroke, either on its own or combined with other therapies, but it may not be beneficial alone for other aspects of upper limb function.

The literature is mixed regarding EMG biofeedback alone for upper limb rehabilitation following stroke, however it may not be beneficial when combined with other therapy approaches.

The literature is mixed regrading cyclic and EMG-triggered neuromuscular electrical stimulation types, as well as functional electrical stimulation, alone or combined with other therapy approaches, for upper limb rehabilitation following stroke.

The various types of neuromuscular electrical stimulation may not be more beneficial compared to one another.

Transcutaneous electrical nerve stimulation may be beneficial for some aspects of upper limb function following stroke.

Noxious thermal stimulation may not be beneficial for upper limb rehabilitation following stroke, whereas innocuous thermal stimulation may improve some aspects of upper limb function.

Muscle vibration may be beneficial for improving upper limb function following stroke.

The literature is mixed regarding additional afferent and peripheral stimulation for upper limb rehabilitation following stroke.

The literature is mixed regarding invasive cortical and nerve stimulation for upper limb rehabilitation following stroke.

The literature is mixed regarding low frequency repetitive transcranial magnetic stimulation, alone or in combination with other therapy approaches, for upper limb rehabilitation following stroke.

High frequency repetitive transcranial magnetic stimulation, alone or in combination with other therapy approaches, may be beneficial for upper limb rehabilitation.

The literature is mixed regarding bilateral repetitive transcranial magnetic stimulation for upper limb rehabilitation.

Theta burst stimulation alone may not be beneficial for upper limb function following stroke, however it may be beneficial for certain aspects of upper limb function when used in combination with repetitive transcranial magnetic stimulation.

The literature is mixed regarding anodal, cathodal, or dual transcranial direct current stimulation, alone or in combination with other therapy approaches, for upper limb rehabilitation following stroke.

Botulinum A likely improves spasticity in the upper limb following stroke, but not range of motion or activities of daily living. The effect on general upper limb motor function is conflicting and less clear.

Botulinum toxin A in combination with other types of therapeutic approaches may be beneficial for certain aspects of upper limb function.

Botulinum toxin B has been less well studied to date in comparison to botulinum toxin A.

Steroid injections may not be beneficial for upper limb rehabilitation following stroke.

Cerebrolysin may be beneficial for aspects of upper limb function following stroke.

The evidence is mixed regarding Levodopa for upper limb rehabilitation following stroke.

The evidence is mixed regarding atorvastatin for upper limb rehabilitation following stroke.

Antidepressants may be beneficial for aspects of upper limb function following stroke.

Dexamphetamine or methylphenidate may be beneficial for aspects of upper limb function following stroke.

Methylphenidate combined with dual transcranial direct current stimulation may be beneficial for upper limb rehabilitation following stroke.

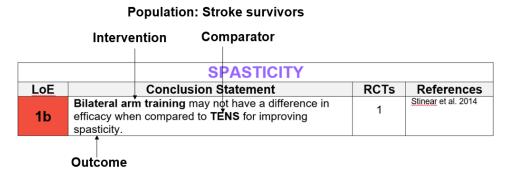
The evidence is mixed regarding acupuncture alone for upper limb rehabilitation following

stroke. Acupuncture combined with conventional or other therapy approaches may not be beneficial for upper limb function. Some forms of acupuncture may be more beneficial than others.

Electroacupuncture with neuronavigation-assisted aspiration may be beneficial for upper limb rehabilitation following stroke, however the evidence is mixed regarding electroacupuncture and transcutaneous electrical acupoint stimulation.

Both meridian acupressure and massage therapy may be beneficial for some aspects of upper limb function following stroke.

Modified Sackett Scale


Level of evidence	Study design	Description	
Level 1a	Randomized controlled trial (RCT)	More than 1 higher quality RCT (PEDro score ≥6).	
Level 1b	RCT	1 higher quality RCT (PEDro score ≥6).	
Level 2	RCT	Lower quality RCT (PEDro score <6).	
	Prospective controlled trial (PCT)	PCT (not randomized).	
	Cohort	Prospective longitudinal study using at least 2 similar groups with one exposed to a particular condition.	
Level 3	Case Control	A retrospective study comparing conditions, including historical cohorts.	
Level 4	Pre-Post	A prospective trial with a baseline measure, intervention, and a post-test using a single group of subjects.	
	Post-test	A prospective post-test with two or more groups (intervention followed by post-test and no re-test or baseline measurement) using a single group of subjects	
	Case Series	A retrospective study usually collecting variables from a chart review.	
		1 7 07	
	Case Report	Pre-post or case series involving one subject.	

New to the 19th Edition of the Evidence-based Review of Stroke Rehabilitation

1) PICO conclusion statements

This edition of Chapter 10: Upper extremity motor rehabilitation interventions synthesizes study results from only randomized controlled trials (RCTs), all levels of evidence (LoE) and conclusion statements are now presented in the Population Intervention Comparator Outcome (PICO) format.

For example:

New to these statements is also the use of colours where the levels of evidence are written.

Red statements like above, indicate that the majority of study results when grouped together show no significant differences between intervention and comparator groups.

Green statements indicate that the majority of study results when grouped together show a significant between group difference in favour of the intervention group.

For example:

Intervention **MOTOR FUNCTION** LoE **Conclusion Statement** RCTs References Meng et al. 2018; Bilateral arm training may produce greater 1a Lee et al. 2017: improvements in motor function than conventional Stinear et al. 2008; therapy. Desrosiers et al. Outcome Comparator

Yellow statements indicate that the study results when grouped together are mixed or conflicting, some studies show benefit in favour of the intervention group, while others show no difference between groups.

For example:

Population: Stroke survivors

	Outo	come Inte	erven	tion	
		DEXTERITY			
LoE		Conclusion Statement	+	RCTs	References
1a	to improve de therapy or n	licting evidence about the effect of exterity when compared to conven- notor relearning programmes dur te phase poststroke.	tional	4	Shah et al. 2016; Yoon et al. 2014; Boake et al. 2007; Ro et al. 2006
	Com	parator			

2) Upper extremity rehabilitation outcome measures

For the studies reviewed, upper extremity rehabilitation outcome measures were classified into the following broad categories to allow for synthesis of results and formulation of PICO conclusion statements:

Motor function: These outcome measures evaluated functional motor movements when using the upper extremities.

Dexterity: These outcome measures assessed fine motor and manual skills through a variety of tasks, particularly with the use of a stroke survivor's hand.

Activities of daily living: These outcome measures assessed performance and level of independence in various everyday tasks.

Spasticity: These outcome measures assessed changes in muscle tone, stiffness, and contractures.

Range of motion: These outcome measures assessed a patient's ability to freely move their upper extremity through flexion, abduction, and subluxation movements for instance, both passively and actively.

Proprioception: These outcome measures assessed sensory awareness about one's body and the location of limbs.

Stroke severity: These outcome measures assessed the severity of one's stroke through a global assessment of a multitude of deficits a stroke survivor may experience.

Muscle strength: These outcome measures assessed muscle power and strength during movements and tasks.

Outcome measures that fit these categories are described in the next few pages.

Outcome Measures Definitions

Motor Function

Action Research Arm Test (ARAT): Is a measure of activity limitation in the paretic arm that assesses a patient's ability to handle objects differing in size, weight and shape. The test evaluates 19 tests of arm motor function, both distally and proximally. Each test is given an ordinal score of 0, 1, 2, or 3, with higher values indicating better arm motor status. The total ARAT score is the sum of the 19 tests, and thus the maximum score is 57. This measure has been shown to have good test-retest reliability and internal validity when used to assess motor function in chronic stroke patients (Ward et al. 2019; Nomikos et al. 2018)

Brunnstrom Recovery Stages (BRS): Is a measure of motor function and muscle spasticity in stroke survivors. The measure contains 35 functional movements which are done with the guidance of a clinician (e.g. should abduction, shoulder adduction, leg flexion/extension). These movements are evenly divided into 2 sections: upper extremity and lower extremity. Each movement is then rated on a 6-point scale (1=Flaccidity is present, and no movements of the limbs can be initiated, 2=Movement occurs haltingly and spasticity begins to develop, 3=Movement is almost impossible and spasticity is severe, 4=Movement starts to be regained and spasticity begins to decline, 5=More difficult movement combinations are possible as spasticity declines further. 6=Spasticity disappears, and individual joint movements become possible). This measure has been shown to have good reliability and concurrent validity (Naghdi et al. 2010; Safaz et al. 2009).

Disabilities of the Arm, Shoulder and Hand (QuickDASH): Is a shortened version of DASH – a patient-reported outcome measure intended for upper extremity disorders. It consists of 11 items from the original 30-item DASH questionnaire, where each item has 5 response options, with scaled scores ranging from 0 (no disability) to 100 (most severe disability). The measure is shown to be valid and reliable in populations with upper extremity disorders (Gummesson et al. 2006; Salaffi et al. 2018).

Fugl-Meyer Assessment (FMA): Is an impairment measure used to assess locomotor function and control of the upper and lower extremities, including balance, sensation, and joint pain in patients poststroke. It consists of 155 items, with each item rated on a three-point ordinal scale. The maximum motor performance score is 66 points for the upper extremity section, 34 points for the lower extremity section, 14 points for the balance section, 24 points for sensation section, and 44 points each for passive joint motion and joint pain section, for a maximum of 266 points that can be attained. The upper extremity section consists of four categories (Shoulder/Elbow/Forearm, Wrist, Hand/Finger, and Coordination) and includes 23 different movements which evaluate 33 items. The items are scored on a 3-point rating scale: 0=unable to perform, 1=partial ability to perform and 2=near normal ability to perform. The measure is shown to have

good reliability and construct validity (Okuyama et al. 2018; Villian-Villian et al. 2018; Nillson et al. 2001; Sanford et al. 1993).

Finger Oscillation Test (FOT): Measures motor control and speed and is used to help detect brain damage through motor dysfunction by assessing the speed of finger movement. It measures the maximal tapping speed of the index finger of each hand by requiring the patient to work the lever arm of a mechanical counter up and down as fast as he or she can. The average number of taps in a 10-second interval is determined, and the patient performs five trials. The measure is considered a reliable indicator of brain function (Prigatano et al. 2004; Eng et al. 2013).

Manual Function Test (MFT): Is an upper-limb function assessment measure used for evaluating proximal arm movements as well as fine and gross dexterity of hemiparetic patients after stroke. The test includes 8 subtests including forward and lateral elevation of arm, grasping, pinching, and pegboard manipulations, and ratings can range from 0 (severely impaired) to 32 (full function). The measure has been shown to have good reliability and validity (Miyamoto et al. 2009; Michimata et al. 2008).

Motor Club Assessment (MCA): Is a measure of functional movement that indicates balance and movement by assessing the range of active movement for shoulder shrugging, arm lifting, forearm supination, wrist cocking, and finger extension. Each movement is rated on a 3-point scale (where 0 = no movement, and 2 = full range of movement). (Sunderland et al. 1989)

Motor Evaluation Scale for Upper Extremity in Stroke Patients (MES-UE): Is a measure that assesses the quality of arm movement performance of the hemiparetic arm and hand in stroke patients. The scale encompasses 10 arm function items with six response categories (scores 0-5), nine hand function items with three response categories (scores 0-2), and three functional tasks with three response categories (scores 0-2). The measure is shown to be valid and reliable for measuring quality of arm movement in stroke patients (Van de Winckel et al. 2006).

Motor Status Scale (MSS): Is a measure of upper limb impairment and disability following stroke. It is divided into 4 sections and assesses shoulder, elbow/forearm, wrist and hand movements on a 6-point scale (maximum score = 82 points). This clinical scale is thought to provide a more complete measurement of upper-limb motor function than the FMA, as it evaluates the complete range of motor function of the upper limb by employing a finer grading of isolated movements. The scale has been shown to have good validity and reliability (Ferraro et al. 2002; Wei et al. 2011).

Rancho Los Amigos Functional Test for the Hemiparetic Upper Extremity (RLAFT-UE): Is a measure used to quantify functional movement ability of the hemiparetic arm in stroke patients. The test consists of a series 17 timed activities of daily living that focus on completion of everyday tasks involving the impaired limb (e.g., zipping a jacket, placing a pillow in a pillowcase). The tasks are arranged in seven levels by degree of difficulty ranging from simple single joint movements at the shoulder to

complex multi-joint movements involving the hand and arm. The test has been shown to have high inter- and intra-rater reliability (Kahn et al. 2006; Wilson et al. 1984).

Rivermead Motor Assessment (RMA): Is a multi-faced measure that assesses gross motor function, leg and trunk movements and arm movements in post-stroke patients. The arm movements section consists of 15 items ranging from specific isolated movements (e.g. protracting shoulder girdle in supine position) to complex tasks (e.g. placing a string around the head and tying a bow at the back). Patients perform all movements actively, and dichotomous scores indicate either success (score 1) or failure (score 0). The measure is shown to have good test-retest reliability, content validity, and construct validity (Dong et al. 2018, Van de Winckel et al. 2007).

Sodring Motor Evaluation Scale (SMES): Is a measure of motor function and activities in patients with stroke. It is comprised of 3 subscales that evaluate the motor function of the upper and lower limb, and gross motor function. The first 2 subscales assess simple voluntary movements, while the third evaluates functional tasks including trunk movements, balance, and gait. The scale is comprised of 32 different items scored using a 5-point scale. The measure is shown to have good concurrent and construct validity, as well as good inter-rater reliability (Gor-Garcia_Fogeda et al. 2014).

Stroke Impairment Assessment Set (SIAS): Is a measure of overall motor function and visuospatial ability in stroke survivors. The measure consists of 20 functional tasks (e.g. walking, combing hair, bending, tying shoes). These tasks are then subdivided into 2 areas: tasks specific for the lower extremity and tasks specific for the upper extremity. Each task is then scored on a 6-point scale (0=cannot complete task, 5=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Panarese et al. 2016; Seki et al. 2014).

Stroke Rehabilitation Assessment of Movement (STREAM): Is a measure of overall gross motor function in stroke survivors. The measure consists of 30 functional tasks (e.g. filling up and drinking from a cup, walking, getting into and out of the bathtub, buttoning a shirt). These tasks are then subdivided into 3 areas: upper limb, lower limb and basic mobility. Each task is then scored on a 3-point scale (0=cannot complete task, 2=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Mateen et al. 2018).

Sollerman Hand Function Test (SHFT): Is a measure of general hand function and dexterity in stroke survivors. The measure consists of 20 functional tasks (e.g. stirring liquid, tying shoes, drinking from a cup, opening/shutting doors). Each task is then scored on a 6-point scale (0=cannot complete task, 5=completes task as well as the unaffected side). This measure has been shown to have good inter/intra reliability and validity (Singh et al. 2015; Brogardh et al. 2007).

Stroke Upper Limb Capacity Scale (SULCS): Is a measure of basic arm capacities and overall arm strength in stroke survivors. The measure consists of 10 functional

tasks (e.g. carrying a briefcase, typing on a computer, writing on a notepad). These tasks are then subdivided into 3 areas: upper limb capacity with no control from wrist and fingers, upper limb capacity with basic control from wrist and fingers, and upper limb capacity with advanced control from wrist and fingers. Each task is then scored on a 3-point scale (0=cannot complete task, 2=completes task as well as the unaffected side). This measure has been shown to have good reliability and concurrent validity (Houwink et al. 2011; Roorda et al. 2011).

Upper Extremity Function Test (UEFT): Is a measure of total upper extremity dexterity and function in stroke survivors. The measure consists of 15 functional tasks (e.g. moving a jar around, stacking coins, reaching and grabbing a cup). There are 3 subsections of the UEFT: (speed of execution, functional rating, task analysis). Each task is then measured on a 6-point scale (-3=cannot complete task, +3=completes task as well as the unaffected side). This measure has good test/re-test reliability and validity (Platz et al. 2009; Feys et al. 2002).

Wolf Motor Function Test (WMFT): Is a measure that quantifies upper extremity motor ability in stroke survivors. The measure consists of 17 tasks (e.g. lifting arm up using only shoulder abduction, picking up a pencil, picking up a paperclip). These tasks are then subdivided into 3 areas: functional tasks, measures of strength, and quality of movement. Patients are scored on a 6-point scale (1=cannot complete task, 6=completes task as well as the unaffected side. This measure has been shown to have good reliability and validity (Wolf et al. 2005; Wolf et al. 2001).

Dexterity

Box and Block Test (BBT): Is a measure of gross unilateral manual dexterity in stroke survivors. This measure consists of 1 functional task. This task involves a patient moving as many wooden blocks as possible from one end of a partitioned box to the other, in a span of 60 seconds. Patients are scored based on the number of blocks they transfer (the higher the blocks transferred, the better the outcome). The measure has been shown to have good reliability and validity. (Higgins et al. 2005; Platz et al. 2005).

Finger to Nose Test (FNT): Is a measure of overall manual dexterity in stroke survivors. This measure consists of 1 functional task. This task involves the patient touching their index finger to their nose as 10 times as fast as possible. This task is then repeated 1 additional time. Patients are scored based on the number of times they touch their nose (the faster the time the better the outcome). The measure has been shown to have good reliability and construct plus concurrent validity (Rodrigues et al. 2017)

Grating Orientation Task (GOT): Is a measure of overall tactile spatial acuity in stroke survivors. This measure consisted of 1 functional task. Patients were asked to differentiate between a smooth and grooved surface that was placed both proximally and then distally from the patient. This process is repeated 10 different times. Patients are scored based on the number of times they successfully identify the type of surface (the higher the rate of identification, the better the outcome). This measure has been shown to have good reliability and validity (Craig 1999).

Grooved Pegboard Test (GPT): Is a measure of fine motor control in stroke survivors. This measure consists of 1 functional task. Patients are asked to place 25 pegs into the grooved pegboard and are typically given 5-10 minutes to do so. The patients are then scored based on the number of pegs inserted and the time it took them to do so (the higher the insertion rate and the lower the time, the better the outcome). This measure has been shown to have good reliability and validity (Lee et al. 2016; Thompson-Butel et al. 2014).

Jebsen-Taylor Hand Function Test (JTHFT): Is a measure used to evaluate fine motor skills with weighted and non-weighted hand functions. The test is derived from hand functions required for activities of daily living and is scored as the time taken (in seconds) to complete each subtest, with a maximum of 120 seconds permitted for each subtest. The test is shown to have good test-retest reliability (Allgower et al. 2017; Stern 1992)

Minnesota Manual Dexterity Test (MMDT): Is a measure of fine motor control and general dexterity in stroke survivors. The measure consists of 2 functional tasks. Patients are asked to place wooden discs instead of a cylindrical object for the first task. Then, they are asked to turn the discs clockwise 180 degrees and told to shut the lid on

the cylinder. Patients are scored on the amount discs inserted and on the screwing of the lid. The higher the number of discs put in the cylinder and the faster/tighter the lid is screwed on, the better the outcome. This measure has been shown to have good reliability and validity (Wang et al. 2018; Surrey et al. 2003).

Nine Hole Peg Test (9HPT): Is a measure of overall manual dexterity in stroke survivors. The measure consists of 1 functional task. Patients are asked to take 9 pegs out of a container and insert them into the pegboard. Once all 9 pegs are inserted they are then taken out of the pegs as quickly as possible and placed back in the container. Patients are scored on how quickly they can insert and take out the pins, so the faster the time, the better the outcome. This measure has been shown to have good reliability and concurrent validity (da Silva et al. 2017).

Purdue Pegboard Test (PPT): Is a measure of precision grip strength and speed in stroke survivors. The measure consists of 1 functional task. Patients are asked to place as many pins as they can onto the pegboard in 30 secs, and then repeat this exercise for their other hand. Patients are scored on the number of pins they can place onto the pegboard in the given amount of time. This measure has been shown to have good reliability and validity (Gonzalez et al. 2017, Wittich & Nadon, 2017).

University of Maryland Arm Questionnaire (UMAQ): Is a measure of gross functional dexterity in the upper arm for stroke survivors. The measure consists of 10 functional tasks (e.g. opening/closing jars, opening/closing doors, reaching and grabbing common household items). Each task is then scored on a 6-point scale (0=cannot complete task, 5=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Beebe et al. 2009, Bovend' Eerdt et al. 2002).

Activities of Daily Living

ABILHAND: Is a measure of how well a stroke survivor utilizes their hands to complete various manual tasks. The measure consists of 23 common bimanual activities (e.g. hammering a nail, wrapping gifts, cutting meat, buttoning a shirt, opening mail). Each task is then scored on a 3-point scale (0=impossible, 1=difficult, 2=easy) assessing overall ability. This measure has been shown to have good reliability and validity in its full form (Ashford et al. 2008; Penta et al. 2001).

Arm Motor Ability Test (AMAT): Is a measure of upper extremity limitation for stroke survivors in performing activities of daily living. The measure consists of 13 common unilateral and bilateral tasks (e.g. manipulating objects such as utensil and telephones; donning/doffing a piece of clothing). Each task is scored on two, 6-point ordinal scales assessing functional ability and the quality of the movement performed. The measure has been shown to have good reliability and construct validity, in its full form and in abbreviated versions for stroke survivors (Fulk et al. 2017; O'Dell 2013; O'Dell 2011).

Assessment of Motor and Process Skills (AMPS): Is a measure of processing skills and overall independence for stroke survivors in performing activities of daily living (ADL) (Ahn et al. 2016). The measure consists of 16 motor tasks (e.g. picking up/setting down a mug, donning/doffing a piece of clothing, turning doorknobs) and 20 process tasks (e.g.memory testing, matching shapes, word recall) (Ahn et al. 2016) Each task is scored on 10 item tool assessing functional ability and the accuracy/speed at which the skill(s) are completed (Lam et al. 2018). This measure has been shown to have good reliability and validity in both its full and abbreviated form (Lam et al. 2018; Ahn et al. 2016).

Barthel Index (BI): Is a measure of how well a stroke survivor can function independently and how well they can perform activities of daily living (ADL). The measure consists of a 10-item scale (e.g. feeding, grooming, dressing, bowel control). Possible total scores range from 0 to 100. This measure has been shown to have good reliability and validity in its full form (Gonzalez et al. 2018; Park et al. 2018).

Canadian Occupational Performance Measure (COPM): Is a measure of how well a stroke survivor engages in self-care, productivity and leisure. The measure consists of 25 functional items/tasks (e.g. bathing, ability to work at least part-time, activities involved in). Each task is then scored on a single 10-point rating scale primarily measuring proficiency in each of the 3 sub-categories (self-care, productivity and leisure). This measure has been shown to have good reliability and validity in its full form. (Yang et al. 2017).

Chedoke Arm and Hand Activity Inventory (CAHAI): Is an upper limb measure that uses a 13-point quantitative scale in order to assess recovery of the arm and hand in performing activities of daily living after a stroke. It is a performance test using 13 bimanually performed real-life items, designed to encourage bilateral upper limb use.

Scores represent the patient's relative ability to independently perform stabilisation or manipulation in ADL with the impaired upper limb. The measure is shown to have good test-retest and interrater reliability, as well as good construct and concurrent validity (Ward et al. 2019; Schuster-Amft et al. 2018; Barteca et al. 2004).

Duruoz Hand Index (DHI): Is a measure used to assess hand-related activity limitation based on questions concerning activities in a person's daily life. It contains 18 activities commonly performed by the hand in the kitchen, during dressing, while performing personal hygiene, while performing office tasks, and other general items. The measure is shown to have good construct validity, test-retest reliability, and internal consistency in patients with stroke (Sezer et al. 2007).

Frenchay Arm Test (FAT): Is a measure of upper extremity motor control that a stroke survivor possesses. The measure consists of 5 common tasks that require use of the upper extremity (e.g. stabilize a ruler/draw a line with a pencil, comb hair, clip a clothespin onto the edge of a table, grasp a cylinder, drink from a glass of water and then set it down). Each task is then scored on a 2-point scale wherein each task receives either a 0 (unsuccessful completion) or a 1 (successful completion). This measure has been shown to have good reliability and validity in its full form. (Heller et al. 1987; Parker et al. 1986)

Frenchay Activities Index (FAI): Is a measure of activities that stroke survivors have participated in recently. The measure consists of 15 items that are in turn split up into 3 subscales (domestic chores, leisure/work and outdoor activities). These items include: preparing meals, washing clothes, light/heavy housework, social outings etc. Each task is then scored on a 4-point scale with 1 being the lowest score. This measure has been shown to have good reliability and concurrent validity in its full form (Schuling et al. 1993)

Functional Activity Scale (FAS): Is a measure of functional everyday activities that stroke survivors participate in daily. The measure consists of 15 functional activities (e.g. cooking, cleaning, zipping up a coat). Each activity is then scored on a 5-point scale (0=cannot complete activity, 4=completes activity as well as the unaffected side). This measure has been shown to have good reliability and validity (Pang et al. 2006).

Functional Independence Measure (FIM): Is an 18-item outcome measure composed of both cognitive (5-items) and motor (13-items) subscales. Each item assesses the level of assistance required to complete an activity of daily living on a 7-point scale. The summation of all the item scores ranges from 18 to 126, with higher scores being indicative of greater functional independence. This measure has been shown to have excellent reliability and concurrent validity in its full form (Granger et al. 1998, Linacre et al. 1994; Granger et al. 1993).

Goal Attainment Scale (GAS): Is a measure that quantifies the progress made towards obtaining personalized rehabilitation goals. The measure consists of 5 levels of goal achievement. The items in these levels consist of various goals individual patients

would like to achieve (e.g. bathing independently, being able to do housework, walking unaided). The patient is then rated on a 4-point scale on their ability to carry out said goals (-2=far behind schedule, +2=far ahead of schedule). This measure has been found to have good reliability and validity in its full form (Hanlan et al. 2017; Krasny-Pacini et al. 2016)

Modified Barthel Index (MBI): Is a measure of how well a stroke survivor can function independently and how well they can perform activities of daily living (ADL). The measure consists of a 10-item scale (e.g. feeding, grooming, dressing, bowel control). Possible scores range from 0 to 20. This measure has been shown to have good reliability and validity in its full form. (MacIsaac et al. 2017; Ohura et al. 2017).

Motor Activity Log (MAL): Is a patient-reported measure of the use and quality of movement of the impaired arm. The measure consists of 30 functional tasks (e.g. handling utensils, buttoning a shirt, combing hair). Each task is then measured on a 6-point scale (0=complete inability to use affected arm). This measure has been shown to have good reliability and validity (Chuang et al. 2017).

Motor Assessment Scale (MAS): Is a performance-based measure that assesses everyday motor function. The measure consists of 8 motor-function based tasks (e.g. supine lying, balanced sitting, walking). Each task is then measured on a 7-point scale (0=suboptimal motor performance, 6=optimal motor performance). This measure has been shown to have good reliability and concurrent validity (Simondson et al. 2003).

Nottingham Extended Activities of Daily Life (NEADL): Is a measure of a stroke survivor's independence with regards to their performance on various activities of daily living. The measure consists of 22 functional tasks (e.g. walking, cooking, cleaning, participation in active hobbies). These tasks are then further divided into 4 distinct subscales (mobility, kitchen, domestic, and leisure activities). In turn, each task is measured on a 5-point (0=not at all, 4=on my own with no difficulty). This measure has been shown to have good reliability and validity (das Nair et al. 2011; Sahin et al. 2008).

Nottingham Stroke Dressing Assessment (NSDA): Is a measure of a stroke survivor's ability to successfully dress themselves. The measure consists of 25 functional dressing tasks (e.g. buttoning up a shirt, buckling a belt/watch, putting on pants). These tasks are then measured on a 4-point scale (0=cannot complete task, 3=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Walker et al. 2011).

Stroke Impact Scale (SIS): Is a patient-reported measure of multi-dimensional stroke outcomes. The measure consists of 59 functional tasks (e.g. dynamometer, reach and grab, walking, reading out loud, rating emotional regulation, word recall, number of tasks completed, and shoe tying). These tasks are then divided into 8 distinct subscales which include: strength, hand function, mobility, communication, emotion, memory, participation and activities of daily living (ADL). Each task is measured on a 5-point

scale (1=an inability to complete the task, 5=not difficult at all). The measure has been shown to have good reliability and validity (Mulder et al. 2016; Richardson et al. 2016).

STAIS Stroke Questionnaire (SSQ): Is a measure of activities and participation in the physical environment for stroke survivors. The measure consists of 36 functional tasks (e.g. taking a bath or shower, ability to handle your finances, opening and closing doors). Each task is measured on a 4-point scale (1=no ability, 4=complete ability). The measure has been shown to have good reliability and concurrent validity (Bouffioulx et al. 2010 Bouffioulx et al. 2008)

Upper Limb Self-Efficacy Test (UPSET): Is a measure of a stroke survivor's confidence in their ability to carry out upper limb specific tasks with their affected side. The measure consists of 20 functional tasks (e.g. shaking hands, flipping a coin, opening/shutting doors). Each task is then measured on a 5-point scale (0=cannot complete task, 4=completes task as well as the unaffected side). The measure has been shown to have good test/retest reliability and validity (Abdullahi, 2016; Pang et al. 2007).

Spasticity

Ashworth Scale (AS): Is a measure of resistance to passive movement in stroke survivors. The measure contains 15 functional m'ovements which are done with the guidance of a trained clinician. These movements are evenly divided into 2 sections: upper extremity and lower extremity. Each movement is then rated on a 5-point scale (0=no increase in muscle tone, 1=barely discernible increase in muscle tone, 2=moderate increase in muscle tone 3=profound increase in muscle tone (movement of affected limb is difficult) 4=complete limb flexion/rigidity (nearly impossible to move affected limb)). This measure has been shown to have good reliability and validity (Merholz et al. 2005; Watkins et al. 2002).

Bhakta Finger Flexion Scale (BFFS): Is a measure of the overall finger flexion experienced by stroke survivors when completing functional tasks. This measure consists of 27 functional tasks (e.g. writing with a pen, typing, squeezing a ball). Each task is then rated on a 3-point scale (0=cannot complete task; fingers too rigid, 2=easily completes task; flexes and extends fingers). This measure has been shown to have good reliability and validity (Christina et al. 2015).

Disability Assessment Scale (DAS): Is a measure of resistance to passive movement in the upper extremity for stroke survivors. The measure consists of 20 functional tasks (e.g. brushing teeth, buttoning a shirt, gait technique & general pain). These tasks are then divided into 4 sections: hygiene, dressing, limb position and pain. Each task is then rated from: 0=no disability, 1=mild disability 2=moderate disability, 3=severe disability. This measure has been shown to have good reliability and validity (Thibaut et al. 2013; Brashear et al. 2002)

Modified Ashworth Scale (MAS): Is a measure of muscle spasticity for stroke survivors. The measure contains 20 functional movements which are done with the guidance of a trained clinician. These movements are evenly divided into 2 sections: upper extremity and lower extremity. Each movement is then rated on a 6-point scale (0=no increase in muscle tone, 1=barely discernible increase in muscle tone 1+=slight increase in muscle tone, 2=moderate increase in muscle tone 3=profound increase in muscle tone (movement of affected limb is difficult) 4=complete limb flexion/rigidity (nearly impossible to move affected limb)). This measure has been shown to have good reliability and validity (Merholz et al. 2005; Blackburn et al. 2002).

Modified Tardieu Scale (MTS): Assesses spasticity through measuring the quality and angle of muscle movements in response to stretches of different velocities. The velocities of muscle movement are as slow as possible (V1), speed of the limb falling from gravity (V2), and when the joint is moved as fast as possible (V3). The quality and angle of muscle reactions are recorded during these velocities. The quality of muscle reactions are scored as: 0 (no resistance throughout the duration of the stretch), 1 (slight resistance), 2 (clear catch occurring at a precise angle, followed by a release), 3 (fatigable clonus), 4 (infatigable clonus), 5 (joint is immovable) (Li et al. 2014b).

Resistance to Passive Movement Scale (REPAS): Is a measure of general muscle spasticity for stroke survivors. The measure contains 52 functional movements which are done with the guidance of a trained clinician. These movements are evenly divided into 2 sections: upper extremity and lower extremity. Each movement is then rated on a 5-point scale (0=no increase in muscle tone, 1=barely discernible increase in muscle tone, 2=moderate increase in muscle tone 3=profound increase in muscle tone (movement of affected limb is difficult) 4=complete limb flexion/rigidity (nearly impossible to move affected limb)). This measure has been shown to have good test/retest reliability and concurrent validity (Platz et al. 2008).

Spasm Frequency Scale (SFS): Is a measure of the amount of spasms experienced by stroke survivors in a day. The measure is only concerned with measuring the amount of spasms in a single day. The amount of spasms per day are rated based on a 5-point scale (0=No spasms. 1= One or fewer spasms per day 2=Between 1 and 5 spasms per day 3=Five to less than 10 spasms per day 4=Ten or more spasms per day, or continuous contraction). This measure has been shown to have good reliability and validity (Santamato et al. 2013; Snow et al. 1990).

Range of Motion

Active Range of Motion (AROM): Is a measure of the range of motion stroke survivors possess without receiving assistance. The measure consists of 20 functional movements for both the upper and lower extremity. The movements are evenly divided into 2 sections: upper extremity and lower extremity. These movements are then rated on a 4-point ordinal scale (0=cannot complete movement, 3=completes movement as well as the unaffected side). This measure has been shown to have good reliability and validity (Beebe & Lang 2009, Dickstein et al. 1986)

Maximal Elbow Extension Angle During Reach (MEEAR): Is a measure of the amount of elbow extension undergone by a stroke survivor while they are reaching for an object. The measure consists of 1 functional movement which is when a patient reaches for an object and their rate of elbow extension is measured (the higher the rate of extension, the better the outcome). This measure has been shown to have good inter/intra reliability and concurrent validity (Murphy et al. 2011; Cristea et al. 2003).

Passive Range of Motion (PROM): Is a measure of the range of motion stroke survivors possess while receiving assistance. The measure consists of 30 functional movements for both the upper and lower extremity. The movements are evenly divided into 2 sections: upper extremity and lower extremity. These movements are then rated on a 5-point ordinal scale (0=cannot complete movement, 4=completes movement as well as the unaffected side). This measure has been shown to have good test/retest reliability and validity (Lynch et al. 2005).

Proprioception

Joint Position Sense Test (JPST): Is a measure of how well stroke survivors can perceive the position of their joints in motion and standing still. The measure consists of 1 functional task repeated several times. This task involves the patient holding 2 different shaped objects that also weigh different from each other and then told to identify which one weighs more and which one has a stranger shape. The more times the patient (s) identifies which shape is heavier/unique, then the better the outcome. This measure has been shown to have good reliability and validity (Kattenstroth et al. 2013).

Kinesthetic Visual Imagery Questionnaire (KVIQ): Is the measure of the visual acuity and muscle movement that stroke survivors possess. The measure consists of 20 functional tasks (e.g. tying shoes, reading out loud, reaching for an object, peripheral vision testing). Each task is then measured on 3-point scale (0=cannot complete task, 2=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Salles et al. 2017; Demanboro et al. 2018).

Revised Nottingham Sensory Assessment (RNSA): Is a measure of somatosensory perception in stroke survivors. The measure consists of 1 functional task repeated with 11 different objects. The task involves patients identifying 11 different objects with their eyes closed. The higher the rate of objects identified leads to a better overall outcome. This measure is shown to have good reliability and validity (Boccuni et al. 2018; Gorst et al. 2018).

Stroke Severity

Modified Rankin Scale (MRS): Is a measure of functional independence for stroke survivors. The measure contains 1 item. This item is an interview that lasts approximately 30-45 minutes and is done by a trained clinician. The clinician asks the patient questions about their overall health, their ease in carrying out ADLs (cooking, eating, dressing) and other factors about their life. At the end of the interview the patient is assessed on a 6-point scale (0=bedridden, needs assistance with basic ADLs, 5=functioning at the same level as prior to stroke). This measure has been shown to have good reliability and validity (Quinn et al. 2009; Wilson et al. 2002).

National Institutes of Health Stroke Scale (NIHSS): Is a measure of somatosensory function in stroke survivors during the acute phase of stroke. This measure contains 11 items and 2 of the 11 items are passive range of motion (PROM) assessments delivered by a clinician to the upper and lower extremity of the patient. The other 9 items are visual exams conducted by the clinician (e.g. gaze, facial palsy dysarthria, level of consciousness). Each item is then scored on a 3-point scale (0=normal, 2=minimal function/awareness). This measure has been shown to have good reliability and validity (Heldner et al. 2013; Weimar et al. 2004).

Neurological Function Deficit Scale (NFDS): Is a measure of neurological deficits experienced by stroke survivors in both the upper and lower extremities. This measure contains 40 functional movements done with the guidance of a clinician (e.g. should abduction, shoulder adduction, leg flexion/extension). These movements are evenly divided into 2 sections: upper extremity and lower extremity. Each movement is then measured on a 6-point scale (0=normal function, 5=severe stroke). This measure has been shown to have good test/retest reliability and validity (Yao & Ouyang. 2014).

Muscle Strength

Hand Grip Strength (HGS): Is a measure of the overall hand grip strength in stroke survivors. The measure consists of 1 functional task. This task involves a patient squeezing the dynamometer and then receiving a hand grip strength measurement. This action is then repeated 1 additional time and the best of the two readings is used as a score. This measure has been shown to have good test/retest reliability and validity (Bertrand et al. 2015).

Isokinetic Peak Torque (IPT): Is a measure of the work capacity of specific muscle groups of a stroke survivor. The measure consists of 1 functional task. The patient performs elbow flexion/extension while attached to a machine that measures force output. The process is then repeated for the leg. The output is then compared to healthy patients that are approximately the same age and build. This measure has been shown to have good test/retest reliability (Horvat et al. 1997).

Manual Muscle Strength Test (MMST): Is a measure of how well a stroke survivor can complete various upper extremity movements while resistance is applied by a trained clinician. The measure consists of 3 functional tasks: muscle contraction, total range of motion and resistance to applied pressure. Patients are scored on a 12-point scale (0=no movement, T=trace/barely discernable movement, 10=movement carried out as well as the unaffected side). This measure has been shown to have good reliability and validity (Kristensen et al. 2017; Ada et al. 2016)

Medical Research Council Scale (MRCS): Is a measure of overall muscle strength a stroke survivor possesses. The measure consists of 33 functional tasks (e.g. opening/shutting cupboards, screwing and unscrewing lids, lifting of light objects). Each task is then rated on a 4-point scale (0=cannot complete task, 3=completes task as well as the unaffected side). This measure has been shown to have good reliability and validity (Hsieh et al. 2011; Fasoli et al. 2004).

Motricity index: Is a measure of motor function involving strength testing of six muscle actions. The muscle actions are graded and assigned weighted scores based on movement present and resistance taken. Weighted scores for each action are then added to obtain scores for each of the three subscales of the measure (arm, leg, and trunk). Each section is scored from 0 to 100, where 0 indicates complete motor function loss. The measure is found to be reliable and valid for use with stroke patients (Safaz et al. 2009; Cameron & Bohannon 2000).

Therapy based interventions

Neurodevelopmental Techniques

Adopted from: http://www.bobathconcept.eu/en/main-site.

There are several approaches that are considered to be neurodevelopmental techniques (NDT). These include the Bobath concept, Brunnstrom movement therapy and motor relearning programmes.

The Bobath concept is a comprehensive, problem-solving treatment approach that focuses on motor recovery (e.g. function, movement and tone) of an individual's affected side after a lesion in the central nervous system (Michielsen et al. 2017). Prior to its introduction in the 1950's, stroke rehabilitation largely assumed a compensatory approach towards the unaffected side for rehabilitation (Kollen et al. 2009). The Bobath concept like other neurodevelopmental techniques relies on the tenets of neuroplasticity, in that motor recovery of the affected side is possible through individualised treatment plans that focus on how tasks are completed, facilitation of movements through therapeutic handling, movement analysis, modification of the environment and appropriate use of verbal cues from therapists (Michielsen et al. 2017).

Brunnstrom movement therapy focuses on retraining motor movements through emphasis of the synergistic and reflexive muscle movements that develop during recovery from hemiplegia. The approach encourages the use of abnormal or spastic muscle movements of the flexors and extensors during early recovery to regain muscle synergies, contrary to the Bobath concept which inhibits these movements (Pandian 2012; Brunnstrom 1970).

The motor relearning programme employs practice of task-specific activities to remediate specific motor skills needed to perform that task. Motor tasks are practiced in context relevant environments to enhance sensory input and modulate performance (Pandian 2012).

A total of 11 RCTs were found that evaluated neurodevelopmental techniques for upper extremity motor rehabilitation, interventions categories are listed below.

Two RCTs compared the Bobath concept to conventional therapy (van der Lee et al. 1999; Gelber et al. 1995). Two RCTs compared motor relearning programmes to conventional therapy (Walker et al. 2012; Platz et al. 2009). Four RCTs compared motor relearning programmes to Bobath concept approaches (El-Bahwary et al. 2012; Langhammer and Stanghelle, 2011; Platz et al. 2005; van Vliet et al. 2005). One RCT compared motor relearning programs to mirror therapy (Jan et al. 2019. One RCT compared Brunnstrom movement therapy to a motor relearning programme (Pandian et al. 2012). One RCT compared Bobath Concept Approaches to physical and behavioural therapy with EMG (Basmajian et al. 1987).

The methodological details and results of all 11 RCTs are presented in Table 1.

Table 1. RCTs Evaluating Neurodevelopmental Techniques for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)				
	Bobath concept approach compared to conventional therapy					
van der Lee et al. (1999) RCT (7) N _{start} =66 N _{end=} 57 TPS=Chronic	E: Bobath concept C: Forced-use therapy Duration: 6h, 5d/wk for 2wk Data analysis: ANCOVA	Action Research Arm Test (+con)				
Gelber et al. (1995) RCT (5) N _{start} =20 N _{end} =20 TPS=Acute	E: Bobath concept C: Traditional techniques Duration: <i>Not reported</i>	 Functional Independence Measure (-) Box and Block Test (-) Nine Hole Peg Test (-) 				
	Motor relearning programmes comp	ared to conventional therapy				
Walker et al. (2012) RCT (7) N _{Start} =70 N _{End} =64 TPS=Acute	E: Motor relearning programme C: Dressing without a task-oriented approach Duration: 3d/wk for 6wk	Nottingham Stroke Dressing Assessment (-) 10-hole peg transfer test (-)				
Platz et al. (2009) RCT (8) Nstart=148 Nend=135 TPS=Not reported	E: Motor relearning programme E2: Passive therapy (with splints) C: Conventional therapy Duration: 45min, 5d/wk for 4wk	Fugl-Meyer Assessment (-) Upper Extremity Performance Test for the Elderly (-)				
Мо	tor relearning programme compared	to Bobath concept approaches				
El-Bahrawy et al. (2012) RCT (8) N _{start} = 40 N _{end} = 40 TPS= Chronic	E: Motor relearning program (+electrical stimulation) C: Bobath (+electrical stimulation) Duration: 45min, 3x/wk, 6wks int - 1:15 on top of conventional rehab + stimulation	 Hand Grip Strength: (+exp) Resting Angle of Ulnar Deviation: (+exp) Purdue Pegboard Test: (-) Modified Ashworth Scale: (-) 				
Langhammer & Stanghelle (2011). RCT (8) Nstart=61 Nend=53 TPS=Not reported	E: Motor relearning programme E2: Bobath concept Duration: 40min, 5d/wk for 2wk	 Motor Assessment Scale (+exp) Sodring Motor Evaluation Scale (+exp) 				
Platz et al. 2005 RCT (8) N _{start} =62 N _{end} =62 TPS=Subacute	E: Motor relearning programme (Arm BASIS) E2: Bobath concept C: No augmented exercise therapy time	Fugl-Meyer Assessment (-)				

	Duration: 4wk	
) (III + + + + (2005)		10 1 ()
van Vliet et al. (2005)	E: Motor Relearning Programme	Motor Assessment Scale (-)
RCT (7)	E2: Bobath concept	Barthel index (-)
N _{start} =120	Duration: 23min, 5d/wk for 4wk	 Extended activities of daily living scale (-)
N _{end} =105		10-hole peg test (-)
TPS=Acute		
	Motor Relearning vs Mir	ror Therapy
Jan et al. (2019)	E: Motor relearning program	Motor Assessment Scale
RCT (5)	C: Mirror therapy	Upper limb: (+exp)
N _{start} = 66	Duration: 2hrs, 3x/wk, 6wks	Hand: (+exp)
N _{end} = 66		Advance Hand: (+exp)
TPS= Not reported		· · · · · · · · · · · · · · · · · · ·
	Brunnstrom movement therapy vs I	Motor relearning programme
Pandian et al. (2012)	E: Brunnstrom hand manipulation	Fugl-Meyer Assessment (+exp)
RCT (6)	treatment	Brunnstrom recovery stages-hand (-)
N _{start} =30	C: Motor relearning programme	• • • · · ·
N _{end} =30	Duration: 1h, 3d/wk for 4wk	
TPS=Chronic	·	
	Boboath concept vs Physical	Therapy with EMG
Basmajian et al. (1987)	E: Bobath concept	Upper Extremity Performance Test for the Elderly (-)
RCT (6)	C: Physical and behavioural therapy	Finger Oscillation Test (-)
N _{start} =29	using EMG	()
N _{end} =23	Duration: 45min, 3d/wk for 5wk	
TPS=Sub-acute	<u> </u>	

Abbreviations and table notes: ANCOVA= analysis of covariance; C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions About Neurodevelopmental Techniques

	MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References		
1b	Bobath concept approaches may not have a difference in efficacy when compared to conventional therapy for improving motor function.	1	Van der lee et al. 1999;		
1b	Motor relearning programmes may not have a difference in efficacy when compared to conventional therapy for improving motor function.	1	Platz et al. 2009		
1a	There is conflicting evidence about the effect of motor relearning programmes to improve motor function when compared to Bobath concept approaches.	2	Langhammer Stanghelle et al. 2011; Platz et al. 2005		
1b	Brunnstrom movement therapy may produce greater improvements in motor function than motor relearning programmes.	1	Pandian et al. 2012		
1b	Bobath concept approaches may not have a difference in efficacy when compared to physical and behavioural therapy with EMG for improving motor function.	1	Basmajian et al. 1987		

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1a	Motor relearning programs may produce greater improvements in muscle strength than Bobath concept approaches.	1	Jan et al. 2019	

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
2	Bobath concept approaches may not have a difference in efficacy when compared to conventional therapy for improving performance of activities of daily living.	1	Gelber et al. 1995	
1b	Motor relearning programmes may not have a difference in efficacy when compared to conventional therapy for improving performance of activities of daily living.	1	Walker et al. 2012	
1a	There is conflicting evidence about the effect of motor relearning programmes to improve performance of activities of daily living when compared to Bobath concept approaches.	2	Langhammer Stanghelle et al. 2011; Van Vliet et al. 2005	
2	Motor relearning programmes may produce greater improvements in activities of daily living than mirror therapy.	1	Jan et al. 2019	

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
2	Bobath concept approaches may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	1	Gelber et al. 1995	
1b	Motor relearning programmes may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	1	Walker et al. 2012	
1a	Motor relearning programmes may not have a difference in efficacy when compared to Bobath concept approaches for improving dexterity.	1	El-Bahrawy et al. 2012	

	SPASTICITY				
LoE	Conclusion Statement	RCTs	References		
1a	Motor relearning programmes may not have a difference in efficacy when compared to Bobath concept approaches for improving spasticity.	1	El-Bahrawy et al. 2012		

	STROKE SEVERITY		
LoE	Conclusion Statement	RCTs	References

1b	Brunnstrom movement therapy may produce greater improvements in stroke severity than motor	1	Pandian et al. 2012
	relearning programmes.		

Key points

Bobath concept approaches and motor relearning programmes may not be beneficial for upper limb rehabilitation following stroke.

Brunnstrom movement therapy may be more beneficial than motor relearning programmes for upper limb function.

Bilateral Arm Training

Adopted from: https://www.newswise.com/articles/stroke-survivors-rehab-arms-with-in-home-device

Bilateral arm training is a technique whereby patients perform the same movements with both the right and left upper limbs simultaneously. The use of bilateral arm training techniques with the upper limb following stroke has been encouraged recently with the development of new theories regarding neural plasticity. Theoretically, the use of the intact limb helps to promote functional recovery of the impaired limb through facilitative coupling effects between the damaged and intact cerebral hemispheres through neural networks linked via the corpus callosum (Morris et al. 2008; Summers et al. 2007).

Interventions for bilateral arm training included: 12 RCTs evaluating bilateral arm training compared to unilateral arm training (Renner et al. 2020; Han and Kim, 2016; Shim et al. 2015; McCombe et al. 2014; Kim et al. 2013; Wu et al. 2013; Morris and van Wijck, 2012; Yang et al. 2012; Lin et al. 2010; Stoykov et al. 2009; Morris et al. 2008; Summers et al. 2007). Seven RCTs evaluating bilateral arm training compared to conventional rehabilitation (Arya et al. 2020; Easow et al. 2019; Meng et al. 2018; Lee et al. 2017; Lee et al. 2013; Stinear et al. 2008; Desrosiers et al. 2005). Four RCTs evaluating bilateral arm training with rhythmic auditory cueing compared to unilateral arm training or conventional rehabilitation (Dispa et al. 2013; Whitall et al. 2011; McCombe Waller et al. 2008; Luft et al. 2004), and task-oriented bilateral arm training (Song et al. 2015). One RCT looked at occupation-based compared to task-based training (Kim et al. 2019). A single RCT looked at bilateral arm training compared to TENS (Stinear et al. 2014); while two RCTs looked at EMG-triggered NMES bilateral arm training (Singer et al. 2013; Cauraugh and Kim, 2002). One study looke at long term compared to short term bilateral arm training with NMES (Cauraugh et al. 2011). Two RCTs looked at bilateral arm

training compared to CIMT (Brunner et al. 2012; Wu et al. 2011), and another two compared bilateral arm training with rhythmic auditory cueing to modified CIMT (van Delden et al. 2015; van Delden et al. 2013).

The methodological details and results of all 33 RCTs evaluating bilateral arm training for the upper extremity motor rehabilitation are presented in Table 2.

Table 2. RCTs Evaluating BAT Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)				
Bilateral arm training compared to unilateral arm training						
Renner et al. (2020) RCT (5) N _{start} =69 N _{end} =51 TPS=Subacute	E: Bilateral arm training C: Unilateral arm training Duration: 1hr, 5x/wk, 6wks	Fugl Meyer Assessment Upper Extremity total: (-) Proximal: (-) Distal: (-) Grip force: (-) Rate of rise of tension: (-) Dorsal hand extension: (-) Isometric force and rate of rise of tension: Rate of Rise of Tension DE: (-) Elbow flex: (-) Elbow extension: (-) Modified Ashworth Scale: (+con)				
Han & Kim (2016) RCT (5) NStart=25 NEnd=25 TPS=Not reported	E: Bilateral arm training C: Unilateral arm training Duration: 5x/wk for 6wk	 Box and Block Test (-) Elbow Amplitude (-) Shoulder Amplitude (+exp) 				
Shim et al. (2015) RCT (6) N _{Start} =20 N _{End} =20 TPS=Chronic	E: Bilateral training C: Unilateral training Duration: 30min, 5x/wk for 6wk	Manual Function Test (+exp) Functional Independence Measure (+exp) Affected hand amount of sedentary and moderate activity (+exp)				
McCombe et al. (2014) RCT (7) NStart=30 NEnd=26 TPS=Subacute	E: Bilateral + Unilateral training C: Unilateral training Duration: 1h, 3d/wk for 12wk	 Wolf Motor Function Test (+exp) University of Maryland Arm Questionnaire (+exp) Fugl-Meyer Assessment (-) Box and Block Test (-) Modified Ashworth Scale (-) 				
Kim et al. (2013) RCT (3) N _{start} =15 N _{end} =15 TPS=Subacute	E1: Bilateral robotic training E2: Unilateral robotic training C: Usual Care Duration: 90min, 2d/wk for 6wk	Fugl-Meyer Assessment (-)				
Wu et al. (2013) RCT (7) NStart=53 NEnd=53 TPS=Chronic	E1: Bilateral robotic training E2: Unilateral robotic training C: Conventional therapy Duration: 90 to 105min, 1d/wk for 4wk	E1 Vs E2 Vs C Motor Activity Log (-) Wolf Motor Function Test (-) ABILHAND Scale (-)				
Morris & van Wijck (2012) RCT (7) Nstart=106 Nend=85 TPS=Not reported	E: Bilateral training C: Unilateral training Duration: 20min, 5d/wk for 6wk	9 Hole Peg Test (+exp) Action Research Arm Test (-)				
Yang et al. (2012) RCT (7)	E1: Unilateral robot assisted training E2: Bilateral robot assisted training	E1 Vs E2 Vs C • Fugl-Meyer Assessment (-)				

N _{start} =21	C: Standard training group	Medical Research Council Scale (-)
N _{end} =21	Duration: 90min, 5d/wk for 4wk	Modified Ashworth Scale (-)
TPS=Chronic		Grip Strength (-)
Lin et al. (2010)	E: Bilateral training	Fugl Meyer Assessment (+exp)
RCT (6)	C: Unilateral training	Functional Independence Measure (-)
N _{start} =33	Duration: 2h, 5d/wk for 3wk	Motor Activityt Log (-)
N _{end} =33	Buration. 211, ou/wic for owic	Wiotor Activity's Log ()
TPS=Chronic		
	E. Dileteral training	Mater Assessment Cools ()
Stoykov et al. (2009)	E: Bilateral training	Motor Assessment Scale (-) Mater Status Carls (-)
RCT (5)	C: Unilateral training	Motor Status Scale (-)
N _{start} =21	Duration: 1h, 3d/wk for 8wk	
N _{end=} 21		
TPS=Chronic		
Morris et al. (2008)	E: Bilateral training	Arm Research Arm Test (-)
RCT (7)	C: Unilateral training	Rivermead Motor Assessment (-)
N _{start} =106	Duration: 20min, 5d/wk for 6wk	9 Hole Peg Test (+exp)
N _{end=} 85		Modified Barthel Index (-)
TPS=Chronic		
Summers et al. (2007)	E: Bilateral training	Modified Motor Assessment Scale (+exp)
RCT (5)	C: Unilateral training	
N _{start} =12	Duration: Not reported	
N _{end} =10	·	
TPS=Chronic		
	Bilateral arm training compared	to conventional rehabilitation
Arya et al. 2020	E: Bilateral arm training	Fugl-Meyers Upper Extremity: (+exp)
RCT (8)	C: Conventional Care	Modified Rankin Scale: (-)
N _{start} = 50	Duration: 1hr. 3x/wk for 8wks	Widalica Rankin Goalo. ()
Nend=50	Duration. IIII. 5X/WK for 6WK5	
TPS= Chronic		
Easow et al. (2019)	E: Bilateral arm training	Action Research Arm Test: (-)
RCT (7)		
	C: Conventional therapy	Functional Independence Measure: (+exp)
N _{start} = 30 N _{end} = 30	Duration: 20min, 6d/wk, 1 wk +	Nine Hole Peg Test: (-)
	(30min/d of conventional therapy)	
TPS=Not reported	F. Hand Ama Discount laterative	First Marian Assessment (com)
Meng et al. (2018)	E: Hand-Arm Bimanual Intensive	Fugl-Meyer Assessment (+exp) Astical Property Arm Tool (1997)
RCT (7)	Therapy	Action Research Arm Test (+exp)
N _{start} =128	C: Conventional Rehabilitation	
N _{end} =123	Program	
TPS=Acute	Duration: 1h (twice per d), 5d/wk for	
	2wk	
Lee et al. (2017)	E: Bilateral Arm Training	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Upper Extremity Training	Box and Block Test (+exp)
N _{Start} =30	Duration: 1h, 5d/wk for 8wk	Modified Barthel Index (+exp)
N _{End} =30		
TPS=Chronic		
Lee et al. (2013)	E: Bilateral training + conventional	Functional Independence Measure (+exp)
RCT (6)	rehabilitation	
N _{Start} =26	C: Conventional rehabilitation	
N _{End} =26	Duration: 30min, 3d/wk for 4wk	
TPS=Chronic		
Stinear et al. (2008)	E: Bilateral training	Fugl Meyer Assessment (+exp)
RCT (6)	C: Self-directed motor practice	Grip strength (-)
N _{start} =32	Duration: 10min (three times per	
N _{end} =27	day), 7d/wk for 4wk	
TPS= Chronic		
Desrosiers et al. (2005)	E: Bilateral training	Fugl Meyer Assessment (-)
RCT (7)	C: Conventional therapy	Grip strength (-)
N _{start} =41	Duration: 45min, 15-20 sessions	Box and Block Test (-)
Nend=33		Purdue Pegboard Test (-)
TPS=Subacute		Finger-to-Nose Test (-)
0-0000000	1	- 1 mgor to 11000 100t ()

		Upper Extremity Performance test for the Elderly (-) Functional Index on decreas Management (-)				
		 Functional Independence Measure (-) The Assessment of Motor and Process Skills (-) 				
Rilateral arm training w	ith rhythmic auditory cueing compar	ed to unilateral arm training or conventional rehabilitation				
Dispa et al. (2013)	E: Bilateral therapy + Rhythmic Auditor					
RCT (7)	Cueing (BATRAC)	ABILHAND scale (-)				
N _{Start} =10	C: Unilateral therapy	STAIS-stroke questionnaire (-)				
N _{End} =10	Duration: 1h, 3d/wk for 4wk	()				
TPS=Not given	·					
McCombe Waller et al. (2008)	E: Bilateral Arm Training + Rhythmic	Reach Task Kinematics: (+exp)				
RCT (4)	Auditory Cueing (BATRAC)					
N _{start} = 18	C: Does matched conventional therapy					
N _{end} = 18 TPS= Chronic	Duration: 1hrs, 3x/wk, 6wks					
	E: Dilatoral arm training with rhythmia	- Fuel Moyor Assessment ()				
Whitall et al. (2011) RCT (6)	E: Bilateral arm training with rhythmic auditory cueing	Fugl Meyer Assessment (-)Wolf Motor Function Test (-)				
N _{Start} =111	C: Dose matched unilateral	Stroke Impact Scale (-)				
N _{End} =92	therapeutic exercises	Elbow extension (-)				
TPS=Chronic	Duration: 20min, 3d/wk for 6wk	Shoulder extension (-)				
		Wrist extension (+exp)				
		Elbow flexion (-)				
Luft et al. (2004)	E: Bilateral arm training + rhythmic	• Fugl Meyer (-)				
RCT (7)	auditory cueing	Wolf Motor Arm Test (-)				
N _{start} =26	C: Therapeutic exercises.	University of Maryland Arm Questionnaire for Stroke (-) Strongth (-)				
N _{end} =21 TPS=Chronic	Duration: 1 h, 3d/wk for 6wk	Elbow Strength (-)Shoulder Strength (-)				
	ning with rhythmic auditory cueing co	empared to task orientated unilateral arm training				
Song et al. (2015)		Box and Block Test (+con)				
RCT (5)	auditory cueing	Jebsen Taylor Hand Function Test (+con)				
N _{Start} =40	C: Task-oriented bilateral arm training					
N _{End} =40	Duration: 30min, 5d/wk for 12wk	, ,				
TPS=Chronic						
		rsus Task-based bilateral arm training				
Kim et al. (2019)	E: Occupation-based bilateral upper	Canadian Occupational Performance Measure				
RCT (7)	extremity training	Performance: (+exp) Catiof attack (+exp)				
N _{start} = 20 N _{end} = 20	C: Task-based bilateral upper extremity	Satisfaction: (+exp)Stroke Impact Scale:				
TPS= Chronic	training Duration: 30min, 5x/wk for 4wks	Stroke impact scale. Strength: (+exp)				
Tr 6= Griffornic	Burduon: Johnni, Jawk 101 4WK3	Activities of Daily Living and Instrumental Activities of Da				
		Living: (+exp)				
		Mobility: (-)				
		 Hand Function: (-) 				
		• Memory: (-)				
		• Communication: (-)				
		Emotion: (+exp)Participant: (+exp)				
		Action Research Arm Test:				
		Grasp: (-)				
		• Grip: (-)				
		• Pinch: (-)				
		Gross Movement: (-)				
		Yonsei-Bilateral Activity Test				
		Quality of performance: (-)				
		Satisfaction: (+exp) Accelerometer				
		 Accelerometer Use of unaffected side: (-) 				
		Use of affected side: (+exp)				
Bilateral arm training compared to TENS						
Stinear et al. (2014) E: Bilateral training • Modified Ashworth Scale (-)						
RCT (6)	C: TENS	Stroke Impact Scale (-)				
	0. 1210	- Strong impage Godio ()				

N ==	IB .:					
Nstart=57	Duration: 45min, 5d/wk for 4wk					
N _{End} =51 TPS=Not given						
EMG-triggered NMES with bilateral arm training compared to EMG-triggered NMES with unilateral training						
	E: Bilateral training + EMG-triggered	Fugl-Meyer Assessment (-)				
Singer et al. (2013) RCT (4)	NMES	Fugi-Meyer Assessment (-) Arm Motor Ability Test (-)				
N _{Start} =24	C: Unilateral training + EMG-triggered	Aim Wotor Ability Test (-)				
N _{End} =21	NMES					
TPS=Chronic	Duration: 30min, 7d/wk for 6wk					
Cauraugh & Kim (2002)	E: EMG-triggered NMES + bilateral	E1 vs E2/C				
RCT (5)	training	Box and Block Test: (+exp)				
N _{start} =25	, 55	<u>E2 vs C</u>				
N _{end} =25	training	Box and Block Test (+exp ₂)				
TPS=Chronic	C: Control					
	Duration: 90min, 4d/wk for 2wk					
	eral arm training compared to short te					
Cauraugh et al. (2011)	E: Long term care (BAT +NMES)	Box and Block Test: (+exp) Box attent times (+exp)				
RCT (6)	(10mo)	Reaction time: (+exp) Force produced: (+exp)				
N _{start} = 18 N _{end} = 18	C: Short term care (BAT +NMES) (4wks)	Force produced: (+exp)				
TPS= Chronic	Duration: 90min, 1x/wk, (16mo follow-u					
	retention test)					
	Bilateral arm training of	compared to CIMT				
Brunner et al. (2012)	E: Bilateral training	Action Research Arm Test (-)				
RCT (7)	C: mCIMT	9 Hole Peg Test (-)				
N _{start} =30	Duration: 4h, 7d/wk for 4wk	Motor Activity Log (-)				
N _{end} =30						
TPS=Not given						
Wu et al. (2011)	E: dCIT	E/E2 vs C				
RCT (5)	E2: Bilateral training	Normalized Movement Unit for unilateral and bilateral tasks				
N _{start} =66	C: Control	(+exp, exp ₂)				
N _{end} =58 TPS=Chronic	Duration: 2h, 5d/wk for 3wk	E2 vs C				
TPS=CITIOTIIC		Peak Velocity for unilateral and bilateral tasks (exp ₂) E vs C				
		Wolf Motor Function Test (+exp)				
		E vs E2/C				
		Motor Activity Log (+exp)				
		Wolf Motor Function Test (-)				
		Peak Velocity for unilateral and bilateral tasks (-)				
		Normalized Movement Unit for unilateral and bilateral tasks				
(-)						
		hythmic auditory cueing with bilateral arm training				
van Delden et al. (2015) RCT (6)	E: Modified CIMT + unilateral training	E2 vs C Bimanual coordination task: (+exp ₂)				
N _{Start} =60	training	E vs C				
N _{End} =52	C: Dose-matched Control	Unimanual reference task (+con)				
TPS=Subacute	Duration: 1h, 3d/wk for 6wk	E vs E2				
	<u> </u>	Unimanual reference task (+exp ₂)				
van Delden et al. (2013)	E1: Modified CIMT + unilateral training					
RCT (6)	E2: Rhythmic auditory cueing +	Nine Hole Peg Test (-)				
N _{Start} =60	bilateral training	Motricity Index (-)				
N _{End} =55	C: Dose-matched control group	Fugl-Meyer Assessment (-)				
TPS=Subacute	Duration: 1h, 3d/wk for 6wk	Motor Activity Log (-) Otacles Indian and Control (-)				
	<u> </u>	Stroke Impact Scale (-) Inhours: Min-minutes: RCT-randomized controlled trial: TPS-time				

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

Conclusions about Bilateral Arm Training

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Bilateral arm training may not have a difference in efficacy when compared to unilateral arm training for improving motor function.	12	Renner et al. 2020; Hung et al. 2019; Hung et al. 2019; Shim et al. 2015; McCombe et al. 2014; Kim et al. 2013; Wu et al. 2013; Wu et al. 2013; Yang et al. 2012; Lin et al. 2010; Stoykov et al. 2009; Morris et al. 2008
1a	There is conflicting evidence about the effect of Bilateral arm training to produce greater improvements in motor function than conventional therapy .	4	Arya et al. 2020; Easow et al. 2019; Meng et al. 2018; Lee et al. 2017; Stinear et al. 2008; Desrosiers et al. 2005
1a	Bilateral arm training with rhythmic auditory cueing may not have a difference in efficacy when compared to unilateral arm training or conventional therapy for improving motor function.	4	Dispa et al. 2013; Whiteall et al. 2011; Luft et al. 2004; McCombe Waller et al. 2004
2	Bilateral arm training with rhythmic auditory cueing may no have a difference in efficacy compared to task orientated unilateral arm training for improving motor function.	1	Song et al. 2015
1b	Occupation-based bilateral arm training may not have a difference in efficacy when compared to task-based bilateral arm training for improving motor function.	1	Kim et al. 2019
2	EMG-triggered NMES with bilateral arm training may not have a difference in efficacy when compared to EMG-triggered NMES with unilateral arm training for improving motor function.	1	Singer et al. 2013
1b	Bilateral arm training may not have a difference in efficacy when compared to CIMT for improving motor function.	2	Brunner et al. 2012; Wu et al. 2011
1a	There is conflicting evidence about the effect of bilateral arm training with rhythmic auditory cueing to improve motor function when compared to mCIMT.	2	Van Delden et al. 2015; Van Delden et al. 2013

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Bilateral arm training may not have a difference in efficacy when compared to unilateral arm training for improving spasticity.	3	Renner et al. 2020; McCombe et al. 2014; Yang et al. 2012	

1b	Bilateral arm training may not have a difference in efficacy when compared to TENS for improving spasticity.	Stinear et al. 2014
----	--	---------------------

STROKE SEVERITY				
LoE	LoE Conclusion Statement RCTs References			
1a	Bilateral arm training may not produce greater improvements in stoke severity than conventional therapy.	1	Arya et al. 2020	

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of bilateral arm training on improving dexterity when compared to unilateral arm training.	4	Han and Kim, 2016; McCombe et al. 2014; Morris and van Wijck, 2012; Morris et al. 2008
1a	Bilateral arm training may not improve dexterity when compared to conventional therapy .	3	Easow et al. 2019; Lee et al. 2017; Desrosiers et al. 2005
2	Bilateral arm training with rhythmic auditory cueing may no have a difference in efficacy compared to task orientated unilateral arm training for improving dexterity.	1	Song et al. 2015
2	EMG-triggered NMES with bilateral arm training may produce greater improvements in dexterity than EMG-triggered NMES with unilateral arm training or conventional therapy.	1	Cauraugh and Kim, 2002
1b	Long term EMG-triggered NMES with bilateral arm training may produce greater improvements in dexterity than short-term EMG-triggered NMES with bilateral arm training.	1	Cauraugh et al. 2011
1b	Bilateral arm training may not have a difference in efficacy when compared to CIMT for improving dexterity.	1	Brunner et al. 2012
1b	Bilateral arm training with rhythmic auditory cueing may not have a difference in efficacy when compared to unilateral training for improving dexterity.	1	Dispa et al. 2103
1b	Bilateral arm training with rhythmic auditory cueing may not have a difference in efficacy when compared to mCIMT for improving dexterity.	1	Van Delden et al. 2013

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1b	Bilateral arm training may not have a difference in efficacy when compared to unilateral arm training for improving muscle strength.	3	Renner et al. 2020; McCombe et al. 2014; Yang et al. 2012	

1a	Bilateral arm training may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	2	Stinear et al. 2008; Desrosiers et al. 2005
1a	Bilateral arm training with rhythmic auditory cueing may not have a difference in efficacy when compared to unilateral arm training or conventional therapy for improving muscle strength.	2	Whiteall et al. 2011; Luft et al. 2004
1b	Occupation-based bilateral arm training when compared to task-based bilateral arm training may produce greater improvements in muscle strength.	1	Kim et al. 2019
1b	Long term bilateral arm training with EMG-NMES may produce greater improvements in muscle strength compared to short-term bilateral arm training with EMG-NMES	1	Cauruagh et al. 2011

RANGE OF MOTION				
LoE	LoE Conclusion Statement RCTs References			
2	Bilateral arm training may not have a difference in		Renner et al. 2020	
_	efficacy compared to unilateral arm training for	1		
	improving range of motion.			

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Bilateral arm training may not have a difference in efficacy compared to unilateral arm training for improving performance of activities of daily living.	8	Hung et al. 2019; Hung et al. 2019; Shim et al. 2015; Wu et al. 2013; Lin et al. 2010; Stoykov et al. 2009; Morris et al. 2008; Summers et al. 2007
1a	There is conflicting evidence about the effect of bilateral arm training to improve performance of activities of daily living when compared to conventional therapy.	4	Easow et al. 2019; Lee et al. 2017; Lee et al. 2013; Desrosiers et al. 2005
1a	Bilateral arm training with rhythmic auditory cueing may not have a difference in efficacy when compared to unilateral arm training for improving performance of activities of daily living.	2	Dispa et al. 2013; Whiteall et al. 2011
2	Bilateral arm training with rhythmic auditory cueing may no have a difference in efficacy compared to task orientated unilateral arm training for improving performance in activities of daily living.	1	Song et al. 2015
1b	Occupation-based bilateral arm training when compared to task-based bilateral arm training may produce greater improvements in performance of activities of daily living.	1	Kim et al. 2019
1b	Bilateral arm training may not have a difference in efficacy when compared to TENS for improving performance of activities of daily living.	1	Stinear et al. 2014

2	EMG-triggered NMES with bilateral arm training may not have a difference in efficacy when compared	1	Singer et al. 2013
_	to EMG-triggered NMES with unilateral arm training		
	for improving performance of activities of daily living.		
	There is conflicting evidence about the effect of	2	Brunner et al. 2012;
1b	bilateral arm training to improve performance of		Wu et al. 2011
	activities of daily living when compared to CIMT.		
	Bilateral arm training with rhythmic auditory		Van Delden et al.
1b	cueing may not have a difference in efficacy when	1	2013
	compared to mCIMT for improving performance of		
	activities of daily living.		

The literature is mixed regarding bilateral arm training for upper limb rehabilitation following stroke.

Bilateral arm training may not be beneficial compared to unilateral training for upper limb function.

Bilateral arm training in combination with other therapy approaches may not be beneficial for upper limb rehabilitation.

Exercise and Strength Training

Adopted from: https://www.flintrehab.com/2018/arm-exercises-for-stroke-patients.

Exercise can be broadly divided into two categories; anaerobic and aerobic activities both of which may be important to post-stroke recovery (Marzolini et al 2018). Anaerobic training often involves small numbers of repetition and/or a short time period during exercise that does not activate aerobic respiration systems. One common type of anaerobic exercise is strength training which is defined as an intervention involving repetitive and effortful muscle contractions with the goal of increasing motor unit activity (Ada et al. 2006). The strength training interventions analyzed were classified as either traditional strength training or functional strength training. Traditional strength training involves resistance training in which individual muscles are often isolated and stabilized through protocols involving free weights or machines (Tomljenovic et al. 2011). Functional strength training is based on the principle of specific adaptations to imposed demands (SAID) in which training programs involve tasks that are modeled after common daily activities (Tomljenovic et al. 2011). These tasks often involve multiple muscle groups and require functional movements that are more applicable and may produce gains in strength in performing everyday tasks (Tomljenovic et al. 2011).

Aerobic training encompasses exercises involve higher amounts of repetition and/or longer durations of exercise aimed at promoting positive adaptations of the cardiorespiratory system. These adaptions are believed to modulate neurotrophins; growth-promoting factors that stimulate synaptogenesis, dendritic branching, and long-term potentiation (Abraha et al. 2018, da Silva et al. 2016). Interventions such as high intensity interval training and circuit classes aim to seek the possible benefits of activating the cardiorespiratory system for improving stroke-associated motor deficiencie.

33 RCTs were found evaluating strength training for upper extremity motor rehabilitation. Ten RCTs compared strength training to conventional rehabilitation, simple joint mobilization or scapular exercises (Coroian et al. 2018; Dell'Uomo et al. 2017; Kim et al. 2017; Kim and Yim, 2017; Jeon et al. 2016; Da Silva et al. 2015; Lin et al. 2015; Wang et al. 2007; Winstein et al.

2004; Trombly et al. 1986). Four RCTs looked at strength training compared to task-specific training (Folkerts et al. 2017; Awad et al. 2015; Thielman et al. 2013; Corti et al. 2012). Three RCTs compared functional strength training to conventional therapy, non-functional strength training or movement performance therapy (Hunter et al. 2018; Park et al. 2017; Graef et al. 2016; Donaldson et al. 2009). Two RCTs looked at functional strength training compared to task-specific training (Agni and Kulkarni, 2017; Pattern et al. 2013). One RCT looked at aerobic exercise compared to stretching (Quaney et al. 2009). Four RCTs evaluated the effect of high intensity interval/circuit training compared to moderate intensity or conventional therapy (Abraha et al. 2018; Nepveu et al. 2017; English et al. 2015; Hesse et al. 2011). Three RCTS examined the effect of high intensity therapy vompared to low intensity therapy (Hogg et al. 2020; Han et al. 2013; Rodgers et al. 2003). One RCT evaluated bilateral isometric handgrip force training with visual feedback vs routine Therapy (Lin et al. 2015). Three RCTs examined the effect of exercise training with feedback versus exercside training without feedback (Cristea et al. 2006; Gilmore and Spaulding 2007; Platz et al. 2001). One RCT examined the effect of motor tasks with 3D characterization intrinsic feedback amplification versus 3D characterization alone (Cruz et al. 2014).

The methodological details and results of all 33 RCTs are presented in Table 3.

Table 3. RCTs Evaluating Strength Training Interventions for Upper Extremity Motor Rehabilitation

Renabilitation		
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Strength training	versus conventional rehabilitation, s	simple joint mobilization or scapular exercises
Coroian et al. (2018) RCT (7) N _{Start} =20 N _{End} =16 TPS=Chronic	E: Isokinetic Strengthening C: Passive Joint Mobilization Duration: 45min/d, 3d/wk for 6wk	 Fugl-Meyer Assessment (+con) Isokinetic Peak Torque (-) Box and Block Test (-) Modified Ashworth Scale (-)
Dell'Uomo et al. (2017) RCT (5) N _{Start} =28 N _{End} =28 TPS=Subacute	E: Scapulohumeral Rehabilitation C: Conventional Arm/Trunk Rehabilitation Duration: 20min/d, 5d/wk for 6wk	Barthel Index (-) Fugl-Meyer Assessment (-) Modified Ashworth Scale (-)
Kim et al. (2017) RCT (5) N _{Start} =24 N _{End} =17 TPS=Chronic	E: Scapular Stabilization Exercise C: Simple Scapular Exercise Duration: 30min/d, 3d/wk for 8wk	Manual Function Test (+exp)
Kim & Yim (2017) RCT (5) N _{Start} =30 N _{End} =29 TPS=Chronic	E: Hand Training and Treadmill Weight Bearing Training C: Conventional Therapy Duration: 30min/d, 3d/wk for 6wk	Handgrip Strength (-)
Jeon et al. (2016) RCT (5) N _{Start} =12 N _{End} =12 TPS=Chronic	E: Repetitive bilateral and unilateral movements with strength exercises C: Conventional rehabilitation Duration: 30min/d, 3d/wk for 12wk	Flexion and abduction range of motion (+exp)
<u>Da Silva et al. (2015)</u> RCT (8)	E: Strength training C: Standard care	TEMPA (+exp) Glumerohumeral flexion strength (+exp)

N _{Start} =20 N _{End} =20 TPS=Chronic	Duration: 30min/d, 2d/wk for 6wk	Active shoulder Range of Motion (+exp) Fugl-Meyer Assessment (+exp)
Lin et al. (2015) RCT (7) Nstart=33 NEnd=33 TPS=Chronic	E: Bilateral Isometric Handgrip Force Training with Visual Feedback C: Routine Therapy Duration: 30min/d, 3d/wk for 4wk	 Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) Motor Assessment Scale (+exp) Barthel Index (+exp)
Wang et al. (2007) RCT (4) Nstart=44 Nend=44 TPS=Subacute	E: Resistance training C: Conventional physical therapy Duration: 5d/wk, 4wks + (con 60min, 5x/wk 4wks)	Blood pressure: (-) Heart rate: (-) Brunnstrom stage: (+exp) Barthel Index: (-)
Winstein et al. (2004) RCT (6) Nstart=64 Nend=44 TPS=Acute	E1: Strength training E2: Functional task practice C: Standard care Duration: 1h/d, 5d/wk for 4wk	E1/E2 vs. C • Fugl Meyer Assessment: (+exp & +exp ₂) • Functional test of the hemiparetic upper extremity (+exp & +exp ₂) • Isometric torque (+exp & +exp ₂)
Trombly et al. (1986) RCT (4) Nstart=20 Nend=20 TPS=Chronic	E1: Resisted Grasp E2: Resisted Extension C: Ballistic Extension Duration: 7d/wk for 3wk	 Finger Extension Range of Motion (-) Speed and ability to rapidly reverse movement (-)
	Strength training versus t	ask-specific training
Folkerts et al (2017) RCT Crossover (4) N _{Start} =11 N _{End} =10 TPS=Chronic	E1: Eccentric Strength Training followed by Task-Oriented Strength Training E2: Task-Oriented Strength Training followed by Eccentric Strength Training Duration: 3d/wk for 4wk	Action Research Arm Test (-) Shoulder, Elbow and Wrist Strength (-)
Awad et al. (2015) RCT (4) Nstart=30 NEnd=23 TPS=Chronic	E: Shoulder Strength Training, Trunk Control Training, and Additional Strengthening Exercises. C: Shoulder Strength Training and Trunk Control Training. Duration: 3d/wk for 6wk	 Shoulder Abduction Peak Torque (+exp) Shoulder External Rotator Peak Torque (+exp) Supraspinatus Peak Force (+exp) Upper Trapezius Peak Force (+exp) Serratus Anterior Peak Force (+exp) Scapular Upward Rotation Angle (+exp) Spinal Lateral Deviation Angle (+exp)
Thielman et al. (2013) RCT (6) N _{Start} =16 N _{End} =16 TPS=Chronic	E: Progressive resistive strength training C: Task-related training Duration: Not reported	Activate range of motion for shoulder and elbow (+exp) Wolf Motor Function Test (+exp) Reaching (+exp)
Corti et al. (2012) RCT Crossover (7) Nstart=14 Nend=14 TPS=Chronic	E1: Power Training E2: Functional Task Practice Duration: 90min/d, 3d/wk for 10wk	Shoulder Flexion and Elbow Extension (+exp)
Functional strength tr	aining versus conventional therapy,	strength training or movement performance therapy
Hunter et al. (2018) RCT (6) N _{Start} =288 N _{End} =240 TPS=Acute	E: Functional Strength Training C: Movement Performance Therapy Duration: 90min/d, 5d/wk for 6wk	 Action Research Arm Test (-) Wolf Motor Function Test (-) Grip and Pinch Force (-)
Park et al. (2017) RCT (5) Nstart=30 NEnd=26	E: Boxing C: Conventional Therapy Duration: 30min/d, 3d/wk for 6wk	 Manual Function Test (+exp) Unaffected Side Hand Grip Strength (+exp)

TPS=Subacute		
TPS=Subacute Graef et al. (2016) RCT (8) NStart=28 NEnd=27 TPS=Chronic Donaldson et al. (2009) RCT (8) Nstart= 30 Nend= 19 TPS= Acute	E: Strength training with a functional goal C: Strength training with non-functional movements Duration: 30min/d, 3d/wk for 5wk E1: Conventional therapy + functional strength E2: Conventional therapy (time matched) C: Conventional therapy Duration: 1hr, 4d/wk for 6wks	Upper-Extremity Performance Test (+exp) Shoulder Strength (-) Grip Strength (-) Shoulder Active Range of Motion (-) Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) E1 Vs C Active Range of Motion: (-) Grip Force: (-) Pinch Force: (-) Pinch Force: (-) Elbow Force (Flexion, Extension): (-) E2 Vs C Active Range of Motion: (-) Grip Force: (-) Finch Force: (-) Shoulder Ashworth Scale (-) Finch Force: (-) Blow Force (Flexion, Extension): (-) E1 Vs E2 Active Range of Motion: (-)
		 Active Range of Motion: (-) 9 Hole Peg Test: (-) Grip Force: (-) Pinch Force: (-) Elbow Force (Flexion, Extension): (-)
	Functional strength training ve	
Agni and Kulkarni (2017) RCT (5) Nstart=45 Nend=37 TPS=Chronic	E1: Strength Training E2: Functional Task-Related Training E3: Functional Task-Related Training with Strength Training Duration: 70min/d, 3d/wk for 6wk	E1 vs. E2: Chedoke Arm and Hand Inventory (exp ₂) Manual Muscle Strength (+exp) Fugl-Meyer Assessment (-) E1 vs E3: Chedoke Arm and Hand Inventory (+exp ₃) Manual Muscle Strength (+exp ₃) Fugl-Meyer Assessment (-) E2 vs E3: Chedoke Arm and Hand Inventory (-) Manual Muscle Strength (+exp ₃) Fugl-Meyer Assessment (-)
Patten et al. (2013) RCT (7) N _{start} =19 N _{end} =17 TPS=Chronic	E: Functional Task Practice and Power Training C: Functional Task Practice Duration: 75min/d, 3d/wk for 4wk	Wolf Motor Function Test (-) Ashworth Scale (-) Functional Independence Measure (+exp)
	Aerobic Exercises \	/s Stretching
Quaney et al. (2009) RCT (6) Nstart=40 Nend=38 TPS=Chronic	E: Aerobic exercise C: Stretching Duration: 45min, 3x/wk, 8wks	VO2 max: (+exp) Wisconsin Card Sorting Task: (-) Stroop task: (-) Trail-making B-A: (-) Serial reaction time task: Repeat: (+exp) Random: (-) Predictive grip force modulation: (+exp) Fugl Meyer total: (-)
Interv	val and Circuit Training Vs Moderate	Exercise or Conventional Therapy
Abraha et al. (2018) RCT (4) N _{start} = 12 N _{end} = 10	E: High intensity interval training C: Moderate Intesity Exercise Duration: 5 cycles of 20min	Box and Block Test: (-)Grip strength: (-)

TPS= Chronic	T	
Nepveu et al. (2017)	E: High-Intensity Interval Training	Skill retention: (+exp)
RCT (5)	C: Rest control	Стин тологию (толь)
N _{start} = 22	Duration: 1x, 15min	
Nend= 21		
TPS= Chronic		
English et al. 2015	E: Circuit Class physiotherapy	Wolf Motor Function Test (-)
RCT (4)	(90min/day 2x/day 37hr/week)	Functional Independence Measure (-)
N _{start} =281	E2: 7 days/week physiotherapy	Stroke Impact Scale (-)
N _{end} =261	18hr/week	
TPS=acute/subacute	C: Conventional physiotherapy (5	
Int code 39	days/week 15hr/week)	
Chap 11	Duration: 4 weeks	
Hesse et al. (2011)	E: High intensity training	Rivermead Mobility Index: (-)
RCT (8)	C: Conventional care	• Rivermead Arm: (-)
N _{start} = 50	Duration:	Box and Block Test: (-)
N _{end} = 48	4x/wk, 30-45min, 2 months at a	Modified Ashworth Scale: (-)
TPS= Subacute	time, (1-2, 5-6, 9-10) for 12 mos	
		ity Thereny or Conventional Core
	Intensity Therapy Versus Low Intens	
Högg et al. (2020) RCT (8)	E: High intensity arm training	Grip Strength: (-) Motricity Index: (-)
N _{start} = 43	therapy	
	C: Low intensity arm training therapy	Fugle-Meyers Assessment Upper Extremity: (+exp) Pay and Black Tests () Pay and Black Tests ()
N _{end} = 32 TPS= Acute	Duration: 60min, 3x/wk, 3wks	Box and Block Test: (-)
	F4 01 /1	E4.V. 0
Han et al. (2013)	E1: 3hr/d arm training	<u>E1 Vs C</u>
RCT (8)	E2: 2hrs/d arm training	Fugle-Meyers Assessment Upper Extremity: (+exp1)
N _{start} = 32	C: 1hr/d arm training	Action Research Arm Test: (+exp1)
N _{end} = 30	Duration:	Barthel's Index: (-)
TPS= Subacute	5d/wk, 6wks	E2 Vs C
		Fugle-Meyers Assessment Upper Extremity: (+exp2) Assign Boson and Asses Teach (1999)
		Action Research Arm Test: (+exp2) Bests Heller Landson ()
		Barthel's Index: (-) 51 Va 52
		E1 Vs E2
		• Fugle-Meyers Assessment Upper Extremity: (-)
		Action Research Arm Test: (-) Deaths to Indian (-)
D - d (0000)	F. High interests distance in the con-	Barthel's Index: (-) Action reasonable Arm Tools (-)
Rodgers et al. (2003)	E: High intensity interdisciplinary	Action research Arm Test (-) Metricity Index (-)
RCT (8)	upper limb therapy (physiotherapist	Motricity Index (-) Frenchay Arm test (-)
N _{start} = 123	and occupational therapist)	Frenchay Arm test (-) Barthel Activities of Daily Living Index (-)
N _{end} = 96	C: Usual care	Nottingham EADL (-)
TPS= Acute	Duration: 30minutes, 5x/week for 6	1 Wateright EABL ()
Dileter	weeks	with viewel feedback ve Beating Thomas
		with visual feedback vs Routine Therapy
Lin et al. (2015)	E: Bilateral isometric handgrip force	• Fugl-Meyers Upper Extremity (+exp)
RCT (7)	training with visual feedback	Wolf Motor Function Test (+exp) Modified Ashworth Scale (Levp)
N _{start} = 33 N _{end} = 33	C: Routine therapy	Modified Ashworth Scale (+exp) Porthol Indox (1989)
I I Nend= 33	Duration: 30 min, 3 days/ week for 4	Barthel Index (+exp)
l .	wooks total of 12 asssions	
TPS= Chronic	weeks, total of 12 sessions	Los training with aut foodbook
TPS= Chronic	Exercise training with feedback vers	i
TPS= Chronic Chang-Yong et al. (2015)	Exercise training with feedback vers E: Target reaching training with	Fugl-Meyer Assessment (+exp)
TPS= Chronic Chang-Yong et al. (2015) RCT (7)	Exercise training with feedback vers E: Target reaching training with biofeedback + routine therapy	Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp)
TPS= Chronic Chang-Yong et al. (2015) RCT (7) N _{Start} =44	Exercise training with feedback vers E: Target reaching training with biofeedback + routine therapy C: Routine therapy	 Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) Reach speed (+exp)
TPS= Chronic Chang-Yong et al. (2015) RCT (7)	Exercise training with feedback vers E: Target reaching training with biofeedback + routine therapy	Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp)

Gilmore and Spaulding (2007)	E: Occupational therapy with video	Klein-Bell Activities of Daily Living Scale (-)
RCT (5)	feedback	Canadian Occupational Performance Measure (-)
N _{start} = 10	C: Occupational therapy	
N _{end} = 10	Duration: 10 sessions	
TPS= Subacute		
Cristea et al. (2006)	E1: Reaching task with knowledge	Movement Time and Variability (+exp2)
RCT (6)	of results	Precision of Movement (-)
N _{start} = 37	E2: Reaching task with knowledge	Fugle-Meyers Assessment (-)
N _{end} = 37	of performance	TEMPA (Performance Test for the Elderly) (-)
TPS= Chronic	C: Non-reaching practice	Spasticity Index of Elbow (-)
	Duration: 1 hr, 5x/week for 2 weeks	
	(10 sessions total)	
Platz et al. (2001)	E: Daily arm ability training with	E Vs C
RCT (4)	knowledge of results feedback	Test Evaluant les Membres superieurs des Personnes
N _{start} = 45	E2: Arm ability training no feedback	Agees
N _{end} = 45	C: Usual care	(+exp)
TPS= Subacute	Duration:	E2 VS C
Mixed pop (75% stroke)		Test Evaluant les Membres superieurs des Personnes
		Agees
		(+exp)
		<u>E1 Vs E2</u>
		Test Evaluant les Membres superieurs des Personnes
	<u> </u>	Agees (-)
Motor tasks 3D cha		amplification versus 3D characterization alone
Cruz et al. (2014)	E: Repetitive motor task under	Correct movements and movements per minute (+exp)
RCT (5)	vibratory feedback and 3D motor	Range of Motion (-)
N _{start} = 44	characterization	
N _{end} = 42	C: 3D motor characterization only	
TPS= Acute	Duration: Not reported	
Crossover		: H_hours: Min_minutes: PCT_randomized controlled trial: TBS_time

Conclusions about Strength Training

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Strength training may produce greater improvements in motor function than conventional therapy, simple joint mobilization or scapular exercises.	7	Coroian et al. 2018; Dell'Uomo et al. 2017; Kim et al. 2017; Da Silva et al. 2015; Lin et al. 2015; Wang et al. 2007; Winstein et al. 2004
1b	There is conflicting evidence about the effect of strength training to improve motor function when compared to task-specific training.	3	Agni and Kulkarni, 2017; Folkerts et al. 2017; Thielman et al. 2013
1a	Functional strength training may not have a difference in efficacy when compared to conventional therapy, strength training or movement performance therapy for improving motor function.	5	Hunter et al. 2018; Agni and Kulkarni, 2017; Park et al. 2017; Graef et al. 2016 Donaldson et al. 2009

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=}0.05$

			A seed to seed IZ all as seed
1b	Functional strength training may not have a difference in efficacy when compared to task-specific training for improving motor function.	3	Agni and Kulkarni, 2017; Pattern et al. 2013;
			Quaney et al. 2009
4 %	Aerobic exercise may not have a difference in	4	Quaricy ct al. 2003
1b	efficacy when compared stretching for improving	1	
	motor function.		Facility at al. 0045
	High intensity interval training or circuit training		English et al. 2015; Hesse et al. 2011
1b	may not have a difference in efficacy when compared	2	110300 01 41. 2011
16	to conventional therapy or rest control for improving	_	
	motor function.		
	There is conflicting evidence about the effect of high	3	Hogg et al. 2020;
1b	internsity arm training to improve motor function	3	Han et al. 2013; Rogers et al. 2003
	when compared to low intensity arm training.		rtogoro ot an 2000
	Bilateral isometric handgrip force training with		Lin et al. 2015
1b	visual feedback may produce greater improvements	1	
	in motor function than routine therapy.		
	There is conflicingt evidence about the effct of arm		Chang-Yong et al.
41.	training with feedback when compared to arm	1	2015; Cristea et al. 2006
1b	training with out feedback for improving motor		2000
	function.		
	Motor tasks with 3D characterization and intrinsic		Cruz et al. 2014
	feedback amplification may produce greater		
2	improvements in motor function when compared to 3D	1	
	characterization alone.		
	0114140101124110114101101		

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1b	Strength training may not have a difference in efficacy when compared to conventional therapy, simple joint mobilization or scapular exercises for improving dexterity.	2	Corian et al. 2018; Trombly et al. 1986
1a	Functional Strength training may not have a difference in efficacy when compared to conventional therapy, simple joint mobilization or scapular exercises for improving dexterity.	1	Donaldson et al. 2009
1b	High intensity interval training or circuit training may not have a difference in efficacy when compared to conventional therapy or rest control for improving dexterity.	2	Abraha et al. 2018; Hesse et al. 2011
1b	High internsity arm training may not have a difference in efficacy when compared to low intensity or conventional arm training for increasing dexterity.	1	Hogg et al. 2020

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1b	Strength training may not have a difference in efficacy when compared to conventional therapy, simple joint mobilization or scapular exercises for improving spasticity.	2	Coroian et al. 2018; Dell'Uomo et al. 2017	

1b	Functional strength training may not have a difference in efficacy when compared to strength training for improving spasticity.	1	Graef et al. 2016
1b	Functional strength training may not have a difference in efficacy when compared to task-specific training for improving spasticity.	1	Pattern et al. 2013
1b	High intensity interval training or circuit training may not have a difference in efficacy when compared to conventional therapy or rest control for improving spasticity.	1	Hesse et al. 2011
1b	Bilateral isometric handgrip force training with visual feedback may produce greater improvements in spasticity than routine therapy.	1	Lin et al. 2015
1b	Arm training with feedback may not have a difference in efficacy for improving spasticity when compared to arm training with out feedback.	1	Cristea et al. 2006

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1a	Strength training may produce greater improvements in range of motion than conventional therapy, simple joint mobilization or scapular exercises.	4	Jeon et al. 2016; Da Silva et al. 2015; Winstein et al. 2004; Trombly et al. 1986
1a	Strength training may produce greater improvements in range of motion than task-specific training.	2	Thielman et al. 2013; Corti et al. 2012
1b	Functional strength training may not have a difference in efficacy when compared to strength training for improving range of motion.	2	Graef et al. 2016; Donaldson et al. 2009
2	Motor tasks with 3D characterization and intrinsic feedback amplification may not have a difference in efficacy when compared to 3D characterization alone for improving range of motion.	1	Cruz et al. 2014

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1b	There is conflicting evidence about the effect of strength training to improve performance of activities of daily living when compared to conventional therapy, simple joint mobilization or scapular exercises.	3	Dell'Uomo et al. 2017; Lin et al. 2015; Wang et al. 2007
2	Functional strength training may produce greater improvements in performance of activities of daily living than strength training.	1	Agni and Kulkarni, 2017
1b	There is conflicting evidence about the effect of functional strength training to improve performance of activities of daily living when compared to task-specific training.	2	Agni and Kulkarni, 2017; Pattern et al. 2013

1b	High internsity arm training may not have a difference in efficacy when compared to low intensity or conventional arm training for increasing performance on acitivites of daily living.	2	Han et al. 2013; Rogers et al. 2003
1b	Bilateral isometric handgrip force training with visual feedback may produce greater improvements in performance on activities of daily living than routine therapy.	1	Lin et al. 2015

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of strength training to improve muscle strength when compared to conventional therapy, simple joint mobilization or scapular exercises.	3	Coroian et al. 2018; Kim and Yim, 2017; Da Silva et al. 2015;
2	Strength training may produce greater improvements in muscle strength than task-specific training .	3	Agni and Kulkarni, 2017; Folkerts et al. 2017; Awad et al. 2015
1a	Functional strength training may not have a difference in efficacy when compared to conventional therapy, strength training or movement performance therapy for improving muscle strength.	5	Hunter et al. 2018; Agni and Kulkarni, 2017; Park et al. 2017; Graef et al. 2016; Donaldson et al. 2009
2	Functional strength training may produce greater improvements in muscle strength than task-specific training.	1	Agni and Kulkarni, 2017
1b	Aerobic exercise may produce greater improvements in muscle strength when compared to stretching .	1	Quaney et al. 2009
1b	High intensity interval training or circuit training may not have a difference in efficacy when compared to conventional therapy or rest control for improving dexterity.	1	Hesse et al. 2011
1b	High internsity arm training may not have a difference in efficacy when compared to low intensity or conventional arm training for increasing muscle strength.	1	Hogg et al. 2020
1b	Arm training with feedback may not have a difference in efficacy for improving performance on activities of daily living when compared to arm training with out feedback.	3	Gilmore and Spaulding 2007; Cristea et al. 2006; Platz et al. 2001

Strength training may be more beneficial for upper limb function than conventional therpay.

The literature is mixed regarding strength training when compared to functional strength training

Task-Specific Training

Task-specific training involves integrating tasks that are relevant to daily life (e.g. pouring a drink into a cup) into rehabilitation programs, while repetitive task training involves repeated practice of these tasks (Van Peppen et al. 2004; McCombe Waller et al. 2008; Stewart et al. 2006). Usually these consist of motor tasks that are focused on improvement of performance and function through goal-directed practice and repetition (Hubbard et al. 2009). It is well established that task-specific practice is required for motor learning to occur (Schmidt, 1991). Focal transcranial magnetic stimulation and functional magnetic resonance imaging have shown that task-specific training, in comparison to traditional stroke rehabilitation, yields long-lasting cortical reorganization specific to the corresponding areas being used (Classen et al.1998). More specifically, Karni et al. (1995), using functional magnetic resonance imaging, and Classen et al. (1998), using transcranial magnetic stimulation, both reported a slowly evolving, long-term, experience-dependent reorganization of the adult primary motor cortex following daily practice of task-specific motor activities.

Also, of interest is that task-specific sessions (i.e., thumb and hand movements), as short as 15 minutes in duration, are also effective in inducing lasting cortical representational changes (Bütefisch et al.1995; Classen et al.1998). According to Page (2003), intensity alone does not account for the differences between traditional stroke and task-specific rehabilitation. For example, Galea et al. (2001) reported that stroke patients who underwent a 3-week long program consisting of 45-minute task-specific, upper limb training showed improvements in measures of motor function, dexterity, and increased use of the more affected upper limbs. According to Page (2003), other, task-specific, low-intensity regimens designed to improve use and function of the affected limb have also reported significant improvements (Smith et al. 1999; Whitall et al. 2000; Winstein et al. 2001).

A total of 25 RCTs were found that looked task-specific training for upper extremity motor rehabilitation. 16 RCTs looked at task-specific training compared to conventional rehabilitation (Song et al. 2020; Moon et al. 2018; Khallaf et al. 2017; Marryam et al. 2017; Skubik-Peplaski et al. 2017; Brkic et al. 2016; Winstein et al. 2016; Kim et al. 2015; Hubbard et al. 2015; Zondervan et al. 2014; Shimodozono et al. 2013; Thielman et al. 2013; Arya et al. 2012; Boyd et al. 2010; Ross et al. 2009; Thielman et al. 2004). Two RCTs looked at the intensity of task-specific training delivered (Waddell et al. 2017; Lang et al. 2016). Two RCTs looked at robotic training with task-specific training compared to robotic training (Page et al. 2020; Hung et al. 2016), and another RCT looked at EMG-triggered NMES with task-specific training compared to EMG-triggered NMES (Kim et al. 2016). One RCT looked at task-specific training with functional electrical stimulation and (Alon et al. 2009). One RCT looked at immediate versus delayed task-specific training (Almhdawi et al. 2016). One study evaluated task-specific training combined with bilateral arm training versus task-specific training alone (Hsieh et al. 2016) and one RCT evaluated task-specific training with external feedback versus task-specific training with internal feedback (Durham et al. 2014).

The methodological details and results of all 25 RCTs are presented in Table 4.

Table 4. RCTs Evaluating Task-Specific Training for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start}	Interventions Duration: Session length,	Outcome Measures Result (direction of effect)
Sample Sizestart Sample Sizestart Time post stroke category	frequency per week for total number of weeks	
Time post stroke category	Task-specific training compared to	conventional rehabilitation
Song et al. (2020) RCT (5) N _{start} = 32 N _{end} = 32 TPS= Chronic	E: Task Specific Training C: Non-Task Specific Training Duration: 30min, 5d/wk for 4wks	Fugl-Meyers Upper Extremity: (-) Modified Barthel Index: (-)
Moon et al. (2018) RCT (5) Nstart= 18 Nend= 18 TPS= Acute	E: Task oriented circuit training C: Conventional therapy Duration: 30min, 5-6x/wk for 4wks	 Fugl-Meyers Upper Extremity: (-) Shoulder/elbow: (-) Wrist: (-) Hand: (-) Coordination: (-) Motor Activity Log Amount of Use: (+exp) Quality of Movement: (-) Stroke Impact Scale: (-) Arm Strength: (+exp) Hand Grip Strength: (+exp) Using Spoon: (+exp) Dress Top Up: (-) Wash: (-) Toenail: (-) Doorknob: (-) Can or Jar: (-) Shoe Lace: (-) Coin Grip: (-) Recovery: (-)
Khallaf et al. (2017) RCT (8) Nstart= 24 Nend= 24 TPS= Chronic	E: Received task specific exercises C: Traditional passive stretch and range of motion exercises Duration: 16 wks, 5x/wk, 60 min and study group wore splint for 2h each 3h	 Nine Hole Peg Test: +(exp) Fugl-Meyers Assessment: Upper Extremity: (-) Hand: (-) Wrist Extension: (+exp) Metacarpophalangeal Extension: (+exp) Thumb Carpometacarpal Extension: (+exp)
Marryam et al. (2017) RCT (4)	E: Task oriented training	Motor Assessment Scale: (+exp) Upper Arm Function: (+exp)

N _{start} = 43	C: Conventional therapy	Hand Item: (+exp)
Nend= 38	Duration: 2hrs/d for 4wks	Advanced Hand Activity: (+exp)
TPS= Subacute (Not reported)	 	
Skubik-Peplaski et al. (2017)	E: Repetitive Task Practice	Fugl-Meyer Assessment (-)
RCT (7)	C: Occupation-Based Intervention	Stroke Impact Scale (-) Stroke Impact Scale (-)
N _{Start} =16	Duration: 55min/d, 2d/wk for 4wk	Canadian Occupational Performance Measure (-)
N _{End} =16		
TPS=Chronic		
Brkic et al. (2016)	E: Repetitive upper limb functional	Action Research Arm Test (+exp)
RCT (5)	task practice	Grip Strength (+exp)
N _{Start} =24	C: Conventional rehabilitation	
N _{End} =22	Duration: 7d/wk for 4wk	
TPS=Acute		
Winstein et al. (2016)	E1: Structured, task-oriented upper	E1/E2 vs C; E1 vs E2
ICARE Trial	extremity training	Wolf Motor Function Test: (-)
RCT (7)	E2: Dose-equivalent occupational	E1/E2 vs C; E1 vs E2
Nstart=361	therapy	Stroke Impact Scale: (-)
N _{End} =361	C: Monitoring-only occupational	
TPS=Subacute	therapy	
16. 1 (0015)	Duration: 1h/d, 3d/wk for 10wk	
Kim et al. (2015)	E: Target reach training with visual	Fugl-Meyer Upper Extremity (+exp) Welf Mater Function Test (+exp)
RCT (8)	biofeedback, routine occupational	Wolf Motor Function Test (+exp)
N _{Start} =44	and physical therapy	Range of Motion of the shoulder (+exp)
N _{End} =40	C: Routine occupational and	
TPS=Chronic	physical therapy	
11.11.1.(0045)	Duration: 1h/d, 3d/wk for 4wk	
Hubbard et al. (2015)	E: Task-specific training and	Upper Limb Motor Assessment Scale (-) Madified Baskin Casta (-) Madified Baskin Casta (-) Madified Baskin Casta (-)
RCT (6)	standard care	Modified Rankin Scale (-)
N _{Start} =23	C: Standard Care	
N _{End} =23	Duration: 2h/d, 5d/wk for 3wk	
TPS=Acute		
Zondervan et al. (2014)	E: Self-guided, high-repetition home	Fugl-Meyer Assessment (-)
RCT (6)	therapy with mechanical arm	Motor Activity Log (-)
N _{Start} =17	exerciser	Ashworth Scale (-)
N _{End} =16 TPS=Chronic	C: Conventional therapy Duration: 1h/d, 3d/wk for 3wk	
		A (; D A T
Shimodozono et al. (2013)	E: Repetitive functional exercise	Action Research Arm Test (+exp)
RCT (7)	C: Conventional rehabilitation	Grasp and pinch (+exp) First Mayor (1997)
N _{Start} =52	Duration: 40min/d, 5d/wk for 4wk	Fugl Meyer (+exp)
N _{End} =49 TPS=Subacute		
	E1: Took Boloted Training (TDT)	Motor Activity Log (Love)
Thielman et al. (2013)	E1: Task-Related Training (TRT)	Motor Activity Log (+exp) Wolf Motor Experien Test (+exp)
RCT (6) N _{start} =37	E2: Progressive Resistive Exercises	Wolf Motor Function Test (+exp) Reaching Performance Scale (+exp)
N _{start} =37 N _{end} =37	(PRE) Duration: Not reported	Reaching Performance Scale (+exp) Fugl-Meyer Assessment (+exp)
TPS=Chronic	Daration. Not reported	Tugi-ivieyer Assessment (Texp)
	E: Task-specific training	Fugl Meyer Score (+exp)
Arya et al. (2012) MTST Trial	C: Standard training using the	Action Research Arm Test (+exp)
RCT (9)	Bobath approach	- Auton Nesearon Ann Test (Texp)
N _{Start} =103	Duration: 1h/d, 4-5d/wk for 4wk	
Nend=103	Daradon. In/a, + ou/writin +wrk	
TPS=Subacute		
Boyd et al. (2010)	E: Task-specific training	Change in reaction and movement time (+exp)
RCT (5)	C: General arm training	Shange in reaction and movement time (Texp)
N _{start} =18	Duration: 3 sessions	
Nend=18	Daration. J 363310113	
TPS=Chronic		
Ross et al. (2009)	E: Task-specific therapy directed at	Action Research Arm Test (-)
RCT (5)	the hand	Manual Muscle Test (-)
NOT (0)	C: Usual care	- Marida Masolo 163t (-)
	J. Coddi odio	I.

N _{start} =39	Duration: TST 1hr/week + 10	
N _{end} =37	mins/week, 3x/week for 6 weeks	
TPS= Acute/subacute Stroke		
90%) TBI (10%)		
Thielman et al. (2004)	E: Progressive resistive exercises	Modified Ashworth Scale (-)
RCT (4)	C: Task-related training	Rivermead Motor Assessment (-)
N _{start} =12	Duration: 35min/d, 3d/wk for 4wk	
N _{end} =12		
TPS=Chronic		
	Intensity of task-spe	cific training
Waddell et al. (2017)	E1: 13.6 hours of task-specific	Action Research Arm Test (-)
RCT (5)	training (100 repetitions/session)	/ /totion resocion / time rest ()
N _{Start} =85	E2: 20 hours of task-specific training	
Nend=78	(200 repetitions/session)	
TPS=Chronic	E3: 26.3 hours of task-specific	
Tr 3=Cilionic	training dose group (300	
	repetitions/session)	
	Duration: 25-50min/d, 4d/wk for 8wk	
1 (0040)		A (; D LA T ()
Lang et al. (2016)	E1: 3200 repetitions of task-specific	Action Research Arm Test (-) Strake Impact Scale (-)
RCT (5)	upper limb training	Stroke Impact Scale (-) Canadian Conventional Performance Management (-)
N _{Start} =85	E2: 6400 repetitions of task-specific	Canadian Occupational Performance Measure (-)
Nend=82	upper limb training	
TPS=Chronic	E3: 9600 repetitions of task-specific	
	upper limb training	
	C: Individualized maximum	
	repetitions	
	Duration: 1h/d, 4d/wk for 8wk	
	Robotic training with tasl	c-specific training
Page et al. (2020)	E1: Myomo electromyography	Fugl-Meyers Upper Extremity: (-)
RCT (7)	(EMG) powered orthosis with	Action Research Arm Test: (-)
N _{start} = 35	repetitive task practice (RTP)	``
N _{end} = 31	E2: Myomo EMG powered orthosis	
TPS= Chronic	C: RTP	
	Duration: 1hr, 3x/wk, 8wk	
Hung et al. (2016)	E: Robotic training + task-specific	Fugl-Meyer Assessment (+exp)
RCT (8)	training	Stroke Impairment Scale (+exp)
N _{Start} =21	C: Robotic training + impairment-	(· · · · · · · · · · · · · · · · · · ·
N _{End} =21	oriented training	
TPS=Chronic	Duration: 20min/d, 3d/wk for 6wk	
	EMG-triggered NMES with to	ask-specific training
Kim et al. (2016)		Fugl-Meyer Assessment (+exp)
	E: EMG-triggered NMES with task- oriented training on paretic arm	
RCT (6)		Box and Block Test (+exp) Ishaan Taylor Hand Evention Test (+exp)
N _{Start} =20	C: EMG-triggered NMES	Jebsen-Taylor Hand Function Test (+exp)
N _{End} =20	Duration: 30min/d, 5d/wk for 4wk	
TPS=Chronic	On a side Tradicional Control Control	matica at Figure 1 Other state
	k Specific Training combined with Fu	
Alon (2009)	E: Task specific training (TST) +	Box and Block Test: (+exp)
RCT (5)	functional electrical stimulation	Jebsen Taylor Hand Function Test: (-)
N _{start} = 46	C: Task specific training	Modified Fugl-Meyer (11 to 33 range): (+exp)
Nend= 46	Duration: 30min 2x/wk for 12wks	
TPS= Not reported		
	Immediate vs Delayed Task	Specific Training
Almhdawi et al. (2016)	E: Immediate task specific training	Canadian Occupational Performance Measure: (+exp)
RCT (7)	(TST)	Motor Activity Log
N _{start} = 21	C: Delayed TST	Amount of Use: (+exp)
Nend=20		Quality of Movement: (+exp)
TPS= Chronic	Duration: 3hr 1x/wk for 6wks	Wolf Motor Function Test: (-)
11 5= 511151116		Shoulder Flexion: (-)
		Active Range of Motion: (-)
	1	- / touve Italige of Motion. (-)

Task-Specific Training Combined with Bilateral Arm Training				
RCT (6)	E: Bilateral arm priming + task-oriente training C: Task-oriented training alone Duration: 90min, 5d/wk for 4wk		Fugl-Meyer Assessment (-) Box and Block Test (-) Grip Strength (-) Modified Rankin Scale (-) Functional Independence Measure (-) Activities of Daily Living (-)	
Task-Specific Tra	Stroke Impact Scale (+exp) Task-Specific Training with External Feedback Vs Task-Specific Training with Internal Feedback			
Durham et al. (2014) RCT (6) Rstart= 42 Nend= 42 TPS= Chronic Cross over E: Task specific training with external feedback C: Task specific training with internal feedback Duration: 96 reaches performed in tot			Raise object task (-) Reach to grasp: peak velocity, push object: peak deceleration and movement duration (+exp)	

Conclusions about Task-Specific Training

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of Task-specific training on producing greater improvements in motor function than conventional therapy .	12	Moon et al. 2018; Khallaf et al. 2017; Skubik-Peplaski et al. 2017; Brkic et al. 2016; Winstein et al. 2016; Kim et al. 2015; Zondervan et al. 2014; Shimodozono et al. 2013; Thielman et al. 2013; Arya et al. 2012; Boyd et al. 2010; Thielman et al. 2004
2	Higher intensity task-specific training may not have a difference in efficacy when compared to lower intensity task-specific training for improving motor function.	2	Waddell et al. 2017; Lang et al. 2016
1b	Robotic training with task-specific training may produce greater improvements in motor function than robotic training with impairment-oriented training.	1	Hung et al. 2016
1b	EMG-triggered NMES with task-specific training may produce greater improvements in motor function than EMG-triggered NMES alone.	1	Kim et al. 2016
2	Task-specific training with functional electrical stimulation may produce greater improvements in motor function than Task-specific training alone.	1	Alon et al. 2009
1b	Immediate Task-specific training may not produce greater improvements in motor function than delayed Task-specific training.	1	Almhdawi et al. 2016
1b	Task-specific training with external feedback may not have a difference in efficacy when compared to task-specific training with internal feedback for improving motor function.	1	Durham et al. 2014

DEXTERITY

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

LoE	Conclusion Statement	RCTs	References
1b	Task-specific training may produce greater improvements in dexterity than conventional therapy.	1	Khallaf et al. 2017
1b	EMG-triggered NMES with task-specific training may produce greater improvements in dexterity than EMG-triggered NMES alone.	1	Kim et al. 2016
2	There is conflicting evidence about the effect of Task- specific training with functional electrical stimulation on producing greater improvements in dexterity than Task-specific training alone.	1	Alon 2009

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Task-specific training may produce greater improvements in spasticity than conventional therapy.	2	Zondervan et al. 2014; Thielman et al. 2004	

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1b	Task-specific training may produce greater improvements in range of motion than conventional therapy.	2	Khallaf et al. 2017; Kim et al. 2016	
1b	Immediate Task-specific training may not produce greater improvements in motor function than delayed Task-specific training.	1	Almhdawi et al. 2016	

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Task-specific training may not have a difference in efficacy when compared to conventional therapy for	1	Hubbard et al. 2015	
	improvements on measures of stroke severity.			

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1a	Task-specific training may not have a difference in efficacy when compared to conventional therapy for improving performance of activities of daily living.	9	Song et al. 2020; Moon et al. 2018; Marryam et al. 2017; Skubik-Peplaski et al. 2017; Hung et al 2016; Winstein et al. 2016; Hubbard et al. 2015; Zondervan et al. 2014; Thielman et al. 2013	
2	Task-specific training may produce greater improvements in performance of activities of daily living than strength training.	1	Agni and Kulkarni, 2017	

2	Higher intensity task-specific training may not have a difference in efficacy when compared to lower	1	Lang et al. 2016
_	intensity task-specific training for improving performance of activities of daily living.		
	Robotic training with task-specific training may		Hung et al. 2016
1b	produce greater improvements in performance of	1	
10	activities of daily living than robotic training with		
	impairment-oriented training.		
	Immediate Task-specific training may produce		Almhdawi et al. 2016
1b	greater improvements in motor function than delayed	1	
	Task-specific training.		

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1b	Task-specific training may produce greater improvements in muscle strength than conventional therapy.	2	Brkic et al. 2016; Shimodozono et al. 2013	

Task-specific training, alone or in combination with other therapy approaches, may be beneficial for some aspects of upper limb function following stroke.

Both the timing of, and higher and lower intensity, task-specific training may have similar effects on upper limb function.

Constraint-Induced Movement Therapy (CIMT)

Roughly 80% of all stroke survivors are left with motor impairments of the upper limb which affects their ability to perform activities of daily living (ADLs) (Kwakkel et al. 2016; Langhorne et al. 2009). Constraint-Induced Movement Therapy (CIMT) is a neurorehabilitation technique originally designed in the 1970s for the purpose of improving upper extremity function poststroke (Christie et al. 2019; Morris et al. 2006). Traditional CIMT involves three key components: 1) immobilization of the non-paretic hand/arm using a mitt for 90% of waking hours, 2) high intensity task-oriented training with the paretic hand/arm, and 3) behavioural strategies to encourage use of the paretic upper limb after the patient leaves therapy, also known as a transfer package (Etoom et al. 2016).

CIMT is designed to overcome the tendency among hemiparetic patients to avoid the use of their paretic limb, a process termed "learned non-use". By constraining the non-paretic upper limb, the patient is forced to activate the muscles and neural pathways of their paretic limb, promoting neuroplasticity and use-dependent cortical reorganization (Taub et al. 1999). This form of treatment has shown promise, especially among stroke survivors with moderate upper limb disability. Modified versions of CIMT (mCIMT) have since been developed with varied dosage, timing, and composition of therapy but generally include less intense training of the paretic limb over a longer period of time (Kwakkel et al. 2016). CIMT is often compared to "forced use", or constraint only treatments, which are conceptually simpler versions of CIMT that do not apply operant training techniques.

Here we provide a review of 63 published RCTs related to CIMT for upper extremity motor rehabilitation. In order to better contextualize this body of evidence, studies were separated and classified according to the type of treatment (CIMT or mCIMT) as well as the time poststroke (acute/subacute phase (<6 months) or chronic stage (>6 months)), leading to 4 groups of RCTs. The authors' own declaration of the type of therapy (i.e. mCIMT or CIMT) was used for classification purposes.

Tables 5 list the summary of 12 examining CIMT in the acute/subacute phase poststroke (Shah et al. 2016; Song et al. 2016; Batool et al. 2015; Thrane et al. 2015; Yoon et al. 2014; Dromerick et al. 2009; Boake et al. 2007; Ro et al. 2006; Page et al. 2005; Albets et al. 2004; Plougman and Corbett 2004; Dromerick et al. 2000).

Table 6 lists 26 RCTs evaluating CIMT in the chronic phase (Doussoulin et al. 2018; Souza et al. 2015; Nadeau et al. 2014; Takebayshi et al. 2013; Huseyinsinoglu et al. 2012; Khan et al. 2011; Wu et al. 2011; Lin et al. 2010; Tariah et al. 2010; Wolf et al. 2010; Lin et al. 2009; Dahl et al. 2008; Gauthier et al. 2008; Lin et al. 2008; Sawaki et al. 2008; Wolf et al. 2008; Lin et al. 2007; Wu et al. 2007; Brogardh and Bengt, 2006; Richards et al. 2006; Underwood et al. 2006; Wolf et al. 2006; Alberts et al. 2004; Suputtitada et al. 2004; Wittenberg et al. 2003)

Tables 7 lists the summary of 10 mCIMT in the acute phase postroke (Yu et al. 2017; Kwakkel et al. 2016; Liu et al. 2016; El-Helow et al. 2014; Treger et al. 2012; Brogardh et al. 2009; Hammer and Lindmark, 2009; Myint et al. 2007.

Table 8 lists 15 RCTs examining the use of mCIMT in the chronic phase (Doussoulin et al. 2017; Hsieh et al. 2016; Yadav et al. 2016; Barzel et al. 2015; Bellay et al. 2015; Smania et al. 2012; Wang et al. 2011; Hayner et al. 2010; Page et al. 2008; Lin et al. 2007; Wu et al. 2007b; Wu et al. 2007c; Yen et al. 2005; Page et al. 2004; Page et al. 2002.)

Table 5. Summary of RCTs Evaluating CIMT in the Acute/Subacute (<6months) Phase for

Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category Shah et al. (2016)	Interventions Duration: Session length, frequency per week for total number of weeks E: CIMT	Outcome Measures Result (direction of effect) • Motor Activity Log (+exp)
RCT (5) N _{Start} =45 N _{End} =40 TPS=Subacute	C: Motor Relearning Program Duration: 80% of working hours	Nine Hole Peg Test (-) Fugl-Meyer Assessment (-)
Batool et al. (2015) RCT (5) N _{Start} =42 N _{End} =42 TPS=Subacute	E: CIMT C: Motor Relearning Programme Duration: 2h, 6d/wk for 3wk	Modified Ashworth Scale (+exp) Functional Independence Measure (+exp)
Thrane et al. (2015) RCT (7) N _{Start} =47 N _{End} =47 TPS=Acute	E: CIMT C: Usual Care Duration: 3h, 1/d for 10d	 Wolf Motor Function Test (-) Stroke Impact Scale (-) Fugl-Meyer Assessment (-)
Boake et al. (2007) RCT (5) N _{start} =23 N _{end} =16 TPS=Acute	E: CIMT C: Traditional rehabilitation Duration: 3h, 6d/wk for 2wk	 Fugl Meyer Motor recovery (-) Grooved Pegboard test (-) Motor Activity Log: Quality of Movement (+exp)
Ro et al. (2006) RCT (6) N _{start} =8 N _{end} =8 TPS=Acute	E: CIMT C: Traditional rehabilitation Duration: 3h, 6d/wk for 2wk	 Grooved Pegboard test (+exp) Fugl-Meyer Assessment (+exp) Motor Activity Log (-)
Page et al. (2005) RCT (5) Nstart=10 Nend=10 TPS=Subacute	E: CIMT C: Regular rehabilitation Duration: 30min, 3d/wk for 10wk	 Action Research Arm Test (-) Fugl-Meyer Assessment (-) Motor Activity Log (-)

Alberts et al. (2004) CC (Conventional rehabilitation Duration: 6h, 5d/wk for 2wk Nove-10			
Numer 10 Numer 10 Puration: 6h, 5d/wk for 2wk Pressubacute	Alberts et al. (2004)	E: CIMT	Maximum precision grip (+exp)
No.set 10 TPS-Subacute El: Forced Use Therapy (Constraint without Shaping) C. Conventional Therapy Duration: 1-6h (incremental increase), 5d/wk for 2wk Functional independence Measure (-)	RCT (5)	C: Conventional rehabilitation	Wolf Motor Function Test (+exp)
TFS-Subacute Figure 1	N _{start} =10	Duration: 6h, 5d/wk for 2wk	
Place Program & Corbett (2004) Response E. Forced Use Therapy (Constraint without Shaping) C. Conventional Therapy Duration: 1-6h (incremental increase), 5d/kk for 2wk Punctional Independence Measure (-) Functional Independence Measure (-) Functional Independence Measure (-) Functional Independence Measure (-) Response Functional Independence Measure (-) Functional Independence Measure (-) Response	N _{end} =10		
RCT (6) Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-20 TPS-Subacute Diametrick et al. (2000) RCT (6) Nome-20 TPS-Subacute E: CIMT C: Traditional upper extremity therapy Nome-20 TPS-Subacute High Intensity CIMT compared to CIMT VECTORS (Study Acronym) Diametrick et al. (2009) RCT (6) Nome-20 TPS-Subacute E1: High-intensity CIMT C: ADI and UE bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk E2: Standard CIMT C: ADI and UE bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk E1: CIMT combined with another intervention Seok et al. (2016) RCT (6) RCT (6) RCT (6) RCT (7) Nome-30 TPS-Subacute E1: CIMT with Visual Bioleedback E2: Visual Bioleedback E2: Visual Bioleedback E2: Visual Bioleedback E2: Conventional Occupational Therapy Duration: 1h, 5d/wk for 2wk E1: CIMT combined with mirror therapy E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk Poon et al. (2014) RCT (7) Nome-26 C: Conventional therapy TPS-Subacute E1: CIMT combined with mirror therapy E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: V E2 Sox and block test (+exp) Nine-hole pegboard test (+exp) Figul-Meyer Assessment () Figul-Meyer Assessme	TPS=Subacute		
RCT (6) Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-23 Nome-20 TPS-Subacute Diametrick et al. (2000) RCT (6) Nome-20 TPS-Subacute E: CIMT C: Traditional upper extremity therapy Nome-20 TPS-Subacute High Intensity CIMT compared to CIMT VECTORS (Study Acronym) Diametrick et al. (2009) RCT (6) Nome-20 TPS-Subacute E1: High-intensity CIMT C: ADI and UE bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk E2: Standard CIMT C: ADI and UE bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk E1: CIMT combined with another intervention Seok et al. (2016) RCT (6) RCT (6) RCT (6) RCT (7) Nome-30 TPS-Subacute E1: CIMT with Visual Bioleedback E2: Visual Bioleedback E2: Visual Bioleedback E2: Visual Bioleedback E2: Conventional Occupational Therapy Duration: 1h, 5d/wk for 2wk E1: CIMT combined with mirror therapy E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk Poon et al. (2014) RCT (7) Nome-26 C: Conventional therapy TPS-Subacute E1: CIMT combined with mirror therapy E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: V E2 Sox and block test (+exp) Nine-hole pegboard test (+exp) Figul-Meyer Assessment () Figul-Meyer Assessme	Ploughman & Corbett (2004)	E: Forced Use Therapy (Constraint	Chedoke McMaster Impairment Inventory (+exp)
Second Procession		without Shaping)	
Nover=23 Duration: 1-6h (incremental increase), 5dwk for 2wk			
TPS=Subacute increase), 5d/wk for 2wk Domerick et al. (2000) RCT (6) RCT (7) Nusr=23 Nusr=23 Nusr=20 TPS=Acute			
Diamerick et al. (2000) C. Traditional upper extremity therapy Duration: 2h, 5d/wk for 2wk	TPS=Subacute		
RCT (6) Nam=23 Nam=20 TPS=Acute High Intensity CIMT compared to CIMT VECTORS (Study Acronym) Domarick et al. (2009) RCT (6) Nam=52 Na	Dromerick et al. (2000)	7	Action Research Arm Test (+exp)
Name			
None=20 TPS=Acute High Intensity CIMT compared to CIMT			
High Intensity CIMT compared to CIMT		Burdion. 211, 6d/WK 101 2WK	Barator mack ()
High Intensity CIMT compared to CIMT			
VECTORS (Study Acronym) Dromerick et al. (2009) Cr. 25 Annual U. Bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk TPS=Subacute CIMT combined with another intervention E1: CIMT with Visual Biofeedback E2: Visual Biofeedback E3: Visial Biofeedback E4: Visial Biofeedback E4: Visial Biofe	11 6-7 10010	High Intensity CIMT con	phared to CIMT
Domerick et al. (2009) E.2: Standard CIMT C. ADL and UE bilateral training Exercises Duration: 2-3h, 5d/wk for 2wk	\((50, 10, 10, 10, 10, 10, 10, 10, 10, 10, 1		-
RCT (6) Nam=52 N			
Num=52 Nerd=52 Nerd=5		1	
Duration: 2-3h, 5d/wk for 2wk			
CIMT combined with another intervention			Stroke Impact Scale (-)
CIMT combined with another intervention RCT (5)		Duration: 2-3h, 5d/wk for 2wk	
Seok et al. (2016) E1: CIMT with Visual Biofeedback E2: Visual Biofeedback C: Conventional Occupational Therapy Duration: 1h, 5d/wk for 2wk Pinch Strength (+exp)	TPS=Subacute		
RCT (5) NStart=32 NStart=26 RCT (7) NStart=26 RCT (7) NStart=26 RCT (7) NStart=26 RCT (7) NStart=26 RCT (8) Duration: 6h, 5d/wk for 2wk E1: CIMT combined with mirror therapy Duration: 6h, 5d/wk for 2wk E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: CIMT combined with mirror therapy Duration: 6h, 5d/wk for 2wk E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk RCT (7) NStart=26 RCT (7) NStart=26 RCT (7) NStart=27 Revi=26 RCT (8) Revi=26 RCT (7) Revi=26 RCT (8) RCT (8) RCT (7) Revi=26 RCT (7) Revi=26 RCT (8) RCT (7) Revi=26 RCT (7) Revi=26 RCT (8) RCT (7) Revi=26 RCT (8) RCT (7) Revi=26 RCT (8) RCT (7) Revi=20 RCT (8) RCT (7) Revi=20 RCT (8) RCT (7) Revi=20 RCT (8) RCT (8) RCT (7) RCT (8) RCT (7) RCT (8) RCT (7) RCT (7) RCT (8) RCT (7) RCT (7) RCT (8) RCT (8) RCT (7) RCT (8) RCT (8) RCT (7) RCT (8) RCT (8) RCT (8) RCT (8) RCT (8) RCT (8) RCT (her intervention
NStart=32 NEnd=30 Therapy Duration: 1h, 5d/wk for 2wk TPS=Subacute E1: CIMT combined with mirror therapy TPS=Subacute E1 × E2 Subacute E2 × E Subacute E1 × E2 Subacute E1 × E2 Subacute Full-Meyr Assessment (+exp) Full-Meyr Assessment (+exp) Full-Meyr Assessment Full-Meyr		E1: CIMT with Visual Biofeedback	
Nend=30 Therapy Duration: 1h, 5d/wk for 2wk E2 vs C Grasp Strength (-) Wolf Motor Function Test (+exp)			
TPS=Subacute Duration: 1h, 5d/wk for 2wk Fugl-Meyer Assessment (+exp) E2 vs C Grasp Strength (-) Pinch Strength (-) Wolf Motor Function Test (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) Box and block test (+exp) Fugl-Meyer Assessment (-) Fugl-Meyer Assessme		C: Conventional Occupational	
Property of the property of			
Grasp Strength (-) Pinch Strength (-) Pinch Strength (-) Wolf Motor Function Test (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) Fugl-Meyer Assessment (+exp2) E1: CIMT combined with mirror therapy RCT (7)	TPS=Subacute	Duration: 1h, 5d/wk for 2wk	
Pinch Strength (-) Wolf Motor Function Test (+exp₂) Fugl-Meyer Assessment (+exp₂) Fugl-Meyer Assessment (+exp₂) E1: CIMT combined with mirror therapy E2: CIMT C3: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: VE2 Box and block test (+exp) Srips strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (-) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (-) E1 v C Box and block test (+exp) Fugl-Meyer Assessment (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Wolf motor function test (-exp)			
Wolf Motor Function Test (+exp₂) Fugl-Meyer Assessment (+exp₂) Start=26			
Yoon et al. (2014) RCT (7) NStart=26 NEnd=26 TPS=Subacute E1: CIMT combined with mirror therapy Duration: 6h, 5d/wk for 2wk E1: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk E1: VC Brunnstrom Recovery Stages (-) Wolf motor function test (-) Korean Modified Barthel Index (-) E1: VC Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Grip strength (+exp) Grip strength (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Figl-Meyer Assessment (-) F			
Second Process of the state o			
RCT (7) N _{Start=26} N _{End=26} N _{End=26} C: Conventional therapy Duration: 6h, 5d/wk for 2wk Solution			Fugl-Meyer Assessment (+exp ₂)
Nstart=26 NEnd=26 NEnd=26 TPS=Subacute E2: CIMT C: Conventional therapy Duration: 6h, 5d/wk for 2wk Duration: 6h, 5d/wk for 2wk E1 v C Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Prugl-Meyer Assessment (-) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Nine-hole pegboard test (+exp) Prugl-Meyer Assessment (-) Nine-hole pegboard test (+exp)	Yoon et al. (2014)	E1: CIMT combined with mirror	
N _{End} =26 TPS=Subacute C: Conventional therapy Duration: 6h, 5d/wk for 2wk Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (-) Fugl-Meyer Assessment (-) Nine-hole pegboard test (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Grip strength (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2)	RCT (7)	therapy	Box and block test (+exp)
Duration: 6h, 5d/wk for 2wk Brunnstrom Recovery Stages (-) Wolf motor function test (-) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (-) E1 v C Box and block test (+exp) Nine-hole pegboard test (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2)	N _{Start} =26		
Wolf motor function test (-) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (-) E1 v C Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2)			
Fugl-Meyer Assessment (-) Korean Modified Barthel Index (-) E1 v C Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2)	TPS=Subacute	Duration: 6h, 5d/wk for 2wk	
 Korean Modified Barthel Index (-) E1 v C Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
E1 v C Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp ₂) Nine-hole pegboard test (-) Grip strength (+exp ₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp ₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp ₂)			
 Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2) 			Korean Modified Barthel Index (-)
 Box and block test (+exp) Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp2) Nine-hole pegboard test (-) Grip strength (+exp2) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp2) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp2) 			
 Nine-hole pegboard test (+exp) Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Grip strength (+exp) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Brunnstrom Recovery Stages (-) Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Wolf motor function test (+exp) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Korean Modified Barthel Index (+exp) E2 vs C Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
E2 vs C Box and block test (+exp ₂) Nine-hole pegboard test (-) Grip strength (+exp ₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp ₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp ₂)			
 Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			Korean Modified Barthel Index (+exp)
 Box and block test (+exp₂) Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Nine-hole pegboard test (-) Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Grip strength (+exp₂) Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Brunnstrom Recovery Stages (-) Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Wolf motor function test (+exp₂) Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
 Fugl-Meyer Assessment (-) Korean Modified Barthel Index (+exp₂) 			
Korean Modified Barthel Index (+exp ₂)			

+exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

- +exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group
- +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group indicates no statistically significant between groups differences at α =0.05

Table 6. Summary of RCTs Evaluating CIMT in the Chronic (>6months) Phase Poststroke

for Upper Extremity Motor Rehabilitation

	for Upper Extremity Motor Renabilitation				
Authors (Year) Study Design (PEDro	Interventions Duration: Session length, frequency	Outcome Measures Result (direction of effect)			
Score)	per week for total number of weeks	Result (direction of effect)			
Sample Sizestart					
Sample Size _{end} Time post stroke category					
Huseyinsinoglu et al. (2012)	E: CIMT	Motor Activity Log (+exp)			
RCT (6)	C: Bobath	Wolf Motor Function Test (-)			
N _{start} =24	Duration: 3h/d for 10d	Functional Independence Measure (-)			
N _{end} =21		, ,			
TPS=Chronic					
Khan et al. (2011)	E1: CIMT	<u>E1 vs E2</u>			
RCT (6)	E2: Therapeutic Climbing	Wolf Motor Function Test (+exp) Meter Assirity Leg ()			
N _{start} =44 N _{end} =39	C: Conventional Neurological Therapy Duration: 15-20h/wk for 4wk	Motor Activity Log (-)Isometric Strength (-)			
TPS=Chronic	Duration: 13-201/WK for 4WK	Active Range of Motion (-)			
11 8 8 111 8 111 8		/ toure range or modern ()			
		E1 vs C			
		Wolf Motor Function Test (-)			
		Motor Activity Log (-) Learnest in Chargest (-)			
		Isometric Strength (-)Active Range of Motion (-)			
Wu et al. (2011)	E1: Distributed CIMT	E1/E2 vs C			
RCT (5)	E2: Bilateral Arm Training	Unilateral and Bilateral Smoothness while			
N _{start} =66	C: Routine Therapy	Reaching: (+exp, +exp ₂)			
N _{end} =65	Duration: 2h, 5d/wk for 3wk	E1 vs E2/C			
TPS=Chronic		Motor Activity Log: (+exp)			
		E1 vs E2/C Wolf Motor Function Test: (+exp)			
Lin et al. (2010)	E: Distributed CIMT	Fugl-Meyer Assessment (+exp)			
RCT (5)	C: Routine Therapy	Motor Activity Log (+exp)			
N _{start} =13	Duration: 2h, 5d/wk for 3wk	, , , ,			
N _{end} =13					
TPS=Chronic					
Tariah et al. (2010)	E: CIMT	Wolf Motor Function Test: Time ()			
RCT (6) N _{start} =20	C: Neuro-developmental Treatment (NDT)	• Time: (-) • Score: (-)			
Nend=18	Duration: 2hrs/d, 2mo	Motor Activity Log:			
TPS=Chronic		Amount of use: (-)			
		Quality of use: (-)			
		Fugl Meyer Assessment:			
		• Joint motion: (-)			
		Pain score: (-) Sensation: (-)			
		Motor function: (-)			
Lin et al. (2009)	E: CIMT	Fugl-Meyer Assessment (+exp)			
RCT (5)	C: Dose Matched Control Intervention	Stroke Impact Scale (+exp)			
N _{start} =32	Duration: 2h, 5d/wk for 3wk	Nottingham Extended Activities of Daily			
N _{end} =32		Living (+exp)			
TPS=Chronic	I OUT	Motor Activity Log (+exp)			
Dahl et al. (2008)	E: CIMT	Wolf Motor Function Test: post (+exp),			
RCT (8) N _{start} =30	C: Community-based rehabilitation Duration: 6h, 5d/wk for 2wk	6mo (-) • Motor Activity Log (-)			
I NSIAIT—OU	Duration. On, Ju/WK 101 ZWK	· MOTOL MOTIVITY LOG (*)			

N _{end} =30		Functional Independence Measure (-)		
TPS=Chronic		Stroke Impact Scale (-)		
Lin et al. (2008) RCT (5) Nstart=22 Nend=22 TPS=Chronic	E: CIMT C: Traditional Intervention Duration: 2h, 5d/wk for 3wk	 Fugl-Meyer Assessment (+exp) Functional Independence Measure (+exp) Motor Activity Log (-) Nottingham Extended Activities of Daily Living Scale (-), mobility subsection (+exp) 		
Lin et al. (2007) RCT (5) Nstart=35 Nend=32 TPS=Chronic	E: CIMT C: Neurodevelopmental techniques Duration: 2h, 5d/wk for 3wk	 Fugl-Meyer Assessment (+exp) Functional Independence Measure (+exp) Motor Activity Log (-) 		
Wu et al. (2007a) RCT (6) N _{start} =47 N _{end} =47 TPS=Chronic	E: CIMT C: Regular interdisciplinary rehab Duration: 2h, 5d/wk for 3wk	Motor Activity Log (+exp) Fugl-Meyer Assessment (-)		
Underwood et al. (2006) RCT (8) Nstart=41 Nend=32 TPS=Chronic	E: CIMT + shaping procedure C: Usual care Duration: 6h, 5d/wk for 2wk	Fugl-Meyer Assessment (-) Wolf Motor Function Test (-)		
Wolf et al. (2006) RCT (8) EXCITE N _{start} =222 N _{end} =201 TPS=Chronic	E: CIMT + shaping procedure C: Usual care Duration: 6h, 5d/wk for 2wk	Wolf Motor Function Test (+exp) Motor Activity Log (+exp)		
Suputtitada et al. (2004) RCT (6) Nstart=69 Nend=69 TPS=Chronic	E: CIMT C: Bimanual-upper-extremity training based on NDT approach Duration: 6h, 5d/wk for 2wk	Action Research Arm Test (+exp) Pinch test (+exp)		
	High compared to low intens	ity CIMT		
Souza et al. (2015) RCT (5) Nstart=24 Nend=19 TPS=Chronic	E1: CIMT high intensity (3h) E2: CIMT low intensity (1h) Duration: 1/3h, 3-4d/wk for 4wk	Fugl-Meyer Assessment (-)Motor Activity Log (-)		
Brogårdh & Bengt (2006) RCT (7) Nstart=16 Nend=16 TPS=Chronic	E: CIMT and using mitt at home for another 3 months every other day C: CIMT Duration: 6h, 5d/wk for 2wk	 Modified Motor Assessment Scale (-) Sollerman Hand Function Test (-) Motor Activity Log (-) 		
Wittenberg et al. (2003) RCT (5) N _{start} =16 N _{end} =16 TPS=Chronic	E: Intense CIMT (6h) C: Less intense CIMT (3h) Duration: 3/6h/d for 10d	 Motor Activity Log (+exp) Wolf Motor Function Test (-) Assessment of Motor and Process Skills (-) 		
High intensity CIMT compared to low intensity CIMT combined with cyloserine (antibiotic)				
Nadeau et al. (2014) RCT (7) Nstart=24 NEnd=22 TPS=Chronic	E1: CIMT-6hr + cycloserine C1: CIMT-6hr + placebo E2: CIMT-2hr + cycloserine C2: CIMT-2hr + placebo Duration: 2/6h, 3-5d/wk for 10wk	 Fugl-Meyer Assessment (-) Wolf Motor Function Test (-) Motor Activity Log (-) 		
N. M	Early compared to delayed			
Wolf et al. (2010) RCT (8) N _{start} =226	E1: CIMT early (3-9 months' post stroke) E2: CIMT delayed (15 to 21 months post stroke)	 Wolf Motor Function Test (+exp) Motor Activity Log (+exp) Stroke Impact Scale (+exp) 		

N _{end} =192 TPS=Chronic	Duration: 90% of waking time for 2wk	
Sawaki et al. (2008) RCT (8) Nstart=30 Nend=30 TPS=Chronic	E: Early CIMT C: Delayed CIMT (4mo after randomization) Duration: 90% of d for 2wk	Grip strength (+exp) Wolf Motor Function Test (-)
Wolf et al. (2008) RCT (8) N _{start} =98 N _{end} =70 TPS=Chronic	E1: CIMT early (3-9 months' post stroke) E2: CIMT delayed (15 to 21 months post stroke) Duration: 90% of waking time for 2wk	Wolf Motor Function Test (+exp) Motor Activity Log (+exp) Functional Independence Measure (+exp) Stroke Impact Scale (+exp)
	CIMT with transfer packa	ige
Takebayashi et al. (2013) RCT (5) Nstart=23 NEnd=21 TPS=Chronic	E: CIMT + transfer package (train affected arm) C: CIMT Duration: 4.5h spread over 2wk	Fugl-Meyer Assessment (-) Motor Activity Log (+exp)
Taub et al. (2013) RCT (5) NStart=45 NEnd=40 TPS=Chronic	E1: Shaping training + CIMT transfer package (TP) E2: Repetitive task practice + TP E3: Repetitive task practice C: Shaping training	E1/E2 vs. E3/C • Motor Activity Log (+exp, +exp ₂) E1/E2 vs. E3/C • Wolf Motor Function Test (+exp, +exp ₂)
Gauthier et al. (2008) RCT (4) Nstart= 49 Nend= 36 TPS= Chronic	E: CIMT with transfer package C: CIMT Duration: 3hrs/d, 5d/wk, 2wks (+30min transfer package)	Motor Activity Log (Quality of Movement): (+exp) Wolf Motor Function Test (Time): (-)
CIM	Γ combined with rTMS or donepezil (chol	inesterase inhibitor)
Richards et al. (2006) Secondary analyses of two parallel RCTs (7) N _{start} =39 N _{end} =35 TPS=Chronic	E1: Traditional CIMT (6h) + donepezil C1: Traditional CIMT (6h) + placebo E2: Shortened CIMT (1h) + repetitive transcranial magnetic stimulation (rTMS) C2: Shortened CIMT (1h) + sham rTMS Duration:1/6h, 5d/wk for 2wk	E1 vs C1 Motor Activity Log (+exp) Wolf Motor Function Test: (-) E2 vs C2 Motor Activity Log (-) Wolf Motor Function Test: (-)
Nadeau et al. (2004) RCT (5) Nstart= 24 Nend= 20 TPS= Chronic	E: Donepezil + CIMT C: Placebo + CIMT Duration: 5mg/d, 2wks + 10mg/d 4wks	Wolf Motor Function Test: (-) Time: (-) Motor Activity Log Amount of Use: (-) Quality of Movement: (-) Fugl-Meyers Upper Extremity: (-) Stoke Impact Scale Item 8 (Participation): (-) Geriatric Depression Scale: (-) Actual Amount of Use Test: (-) Amount: (-) Quality: (-) Stroke Impact Scale - Item 9: (-) Caregiver Strain Index: (-) Finger-Tapping: (-)
	Individual compared to Group	
Doussoulin et al. (2018) RCT (4) N _{start} = 36 N _{end} = 36 TPS= Chronic	E: CIMT (group) C: CIMT (individual) Duration: 3hrs, 10 consecutive days	Motor Activity Log (Amount of Use): (+exp) Action Research Arm Test: (+exp)

Table 7. Summary of RCTs Evaluating Modified CIMT in the Acute/Subacute (<6 months)

Phase for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Yu et al. (2017) RCT (5) Nstart=29 Nend=29 TPS=Acute	E: mCIMT C: Conventional therapy Duration: 3h/d for 10d	Wolf Motor Function Test: (+exp) Time: (-) Motor Activity Log Amount of Usage: (+exp) Quality of Movement: (-)
Kwakkel et al. (2016) RCT (7) Nstart=159 NEnd=159 TPS=Subacute	E1: Electromyographic Neuromuscular Stimulation on finger extensors E2: Modified Constraint Induced Movement Therapy C1: Unfavourable prognosis based on voluntary finger extension. Received usual care. C2: Favourable prognosis based on voluntary finger extension. Received usual care. Duration: 3h, 5d/wk for 3wk	E2 vs C2; E1 vs C1 Action Research Arm Test: (+exp ₂) Fugl-Meyer Assessment: (-) Wolf Motor Function Test (-) Motricity Index (-) Erasmus Modified Nottingham Sensory Assessment (-) Nine-Hole Peg Test (-) Frenchay Arm Test (-) Motor Activity Log (-) Stroke Impact Scale-Hand (+exp ₂)
Liu et al. (2016) RCT (6) NStart=90 NEnd=86 TPS=Subacute	E1: Modified Constraint Induced Movement Therapy E2: Self-Regulated Modified Constraint Induced Movement Therapy C: Conventional Therapy Duration: 1h, 5d/wk for 2wk	E1 vs C Action Research Arm Test (+exp) Fugl-Meyer Assessment (+exp) Lawton Instrumental Activities of Daily Living (+exp) Motor Activity Log (+exp) E2 vs C Action Research Arm Test (+exp ₂) Fugl-Meyer Assessment (+exp ₂) Lawton Instrumental Activities of Daily Living (-) Motor Activity Log (+exp ₂) E1 vs E2 Action Research Arm Test (-) Fugl-Meyer Assessment (+exp ₂) Lawton Instrumental Activities of Daily Living (+exp ₂) Lawton Instrumental Activities of Daily Living (+exp ₂) Motor Activity Log (+exp ₂)
EI-Helow et al. (2014) RCT (6) N _{start} =60 N _{end} =60 TPS=Acute	E: Modified Constraint Induced Movement Therapy C: Conventional Rehabilitation Duration: 6h/d for 2wk	Fugl-Meyer Assessment (+exp) Action Research Arm Test (+exp)
Treger et al. (2012) RCT (7) N _{start} =28	E: mCIMT C: Traditional rehabilitation Duration: 4h, 2d/wk for 2wk	Functional Independence Measure (-) Manual Function Test (-)

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=}0.05$

N _{end} =28 TPS=Subacute Brogårdh et al. (2009) RCT (5) N _{start} =24 N _{end} =24 TPS=Subacute	E: Shortened CIMT (mitt use) C: No mitt use Duration: 90% of waking time for 12d	Motor Assessment Scale (-) Sollerman Hand Function Tst (-) 2-Point Discrimination Test (-) Motor Activity Log Test (-)
Hammer & Lindmark (2009) RCT (6) N _{Start} =30 N _{End} =26 TPS=Subacute	E: Restraining sling and Standard Rehabilitation C: Standard Rehabilitation Duration: 6h, 5d/wk for 2wk	 Fugl-Meyer Assessment (-) Action Research Arm Test (-) Motor Assessment Scale (-) 16-Hole Peg Test (-) Grip strength ratio (-) Modified Ashworth Scale (-)
Myint et al. (2007) RCT (7) Nstart=43 Nend=43 TPS=Subacute	E: mCIMT C: Traditional rehabilitation Duration: 4h/d for 10d	Action Research Arm Test (+exp) Motor Activity Log (+exp)
	mCIMT combined with audio	try feedback
Bang. (2016) RCT (7) Nstart= 20 Nend= 20 TPS= Subacute	E: mCIMT combined with auditory feedback C: mCIMT Duration: 1 hour/day) intervention sessions (5 days/week for 4 weeks)	Action Research Arm Test: (+exp) Fugl-Meyers upper extremity (+exp) Modified Barthel Index (+exp) Motor Activity log

Table 8. Summary of RCTs Evaluating Modified CIMT in the Chronic (>6 months) Phase for **Upper Extremity Motor Rehabilitation**

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Hsieh et al. (2016) RCT (7) N _{start} =34 N _{end} =34 TPS=Chronic	E: mCIMT C: Regular Therapy Duration: 105min, 5d/wk for 4wk	Wolf Motor Function Test (+exp) Nottingham Extended Activities of Daily Living (+exp) Functional Independence Measure (-)
Yadav et al. (2016) RCT (5) N _{start} =65 N _{end} =60 TPS=Chronic	E: mCIMT C: Conventional rehabilitation Duration: 3h, 3d/wk for 4wk	Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp)
Barzel et al. (2015) RCT (6) N _{start} =156 N _{end} =156 TPS=Chronic	E: Home CIMT C: Standard Therapy Duration: 5h/wk for 4wk	 Motor Activity Log (+exp) Wolf Motor Function Test (-) Nine Hole Peg Test (-) Stroke Impact Scale (-) Barthel Index (-) Instrumental Activities of Daily Living (-)
Bellay et al. (2015) RCT (5) N _{start} = 40	E: mCIMT C: Hand-arm bimanual intensive training (HABIT) training	Action Research Arm Test (+exp) Fugl-Meyer Upper Extremity (+exp)

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

N _{end} = 40 TPS= NR	Duration: 30min/d, 6wks	
Smania et al. (2012) RCT (8) Nstart=66 Nend=40 TPS=Chronic	E: mCIMT C: Dose-match task-specific therapy Duration: 2h, 5d/wk for 2wk	Wolf Motor Function Test (+exp) Motor Activity Log (+exp)
Wang et al. (2011) RCT (4) Nstart=30 Nend=30 TPS=Chronic	E1: mCIMT E2: Intensive conventional therapy C: Conventional therapy Duration: 3h, 5d/wk for 4wk	Wolf Motor Function Test (+exp)
Hayner et al. (2010) RCT (4) Nstart=12 Nend=12 TPS=Chronic	E: mCIMT C: Bilateral training Duration: 6h/d for 10d	Wolf Motor Function Test (-) COPM (-)
Page et al. (2008) RCT (5) N _{start} =35 N _{end} =35 TPS=Chronic	E1: mCIMT + physical and occupational therapy E2: Traditional rehab C: No therapy Duration: 5h, 5d/wk for 10wk	Fugl-Meyer Assessment (-) Action Research Arm Test (+exp)
Lin et al. (2007) RCT (7) Nstart=34 Nend=31 TPS=Chronic	E: mCIMT C: Traditional rehab Duration: 6h, 5d/wk for 3wk	Motor Activity Log (+exp) Functional Independence Measure (+exp)
Wu et al. (2007b) RCT (5) Nstart=26 Nend=26 TPS=Chronic	E: mCIMT + a restraining mitt on the unaffected hand C: Traditional therapy Duration: 2h, 5d/wk for 3wk	 Fugl-Meyer Assessment (+exp) Functional Independence Measure (+exp) Motor Activity Log (+exp) Stroke Impact Scale (+exp)
Wu et al. (2007c) RCT (6) Nstart=30 Nend=30 TPS=Chronic	E: mCIMT C: Regular occupational therapy Duration: 2h, 5d/wk for 3wk	Motor Activity Log (+exp) Functional Independence Measure (+exp)
Yen et al. (2005) RCT (6) Nstart=30 Nend=30 TPS=Chronic	E: mCIMT C: Conventional therapy Duration: 6hrs/d for 2wks	Wolf Motor Function Test items: Extend elbow (weight): (+exp) Lift pencil: (+exp) Stack checkers: (+exp) Flip cards: (+exp) Turn key in lock: (+exp) Lift basket: (+exp) Forearm to table (side): (-) Forearm to box (side): (-) Extend elbow (side): (-) Hand to table (front): (-) Hand to box (front): (-) Reach and retrieve: (-) Lift can: (-) Lift paper clip: (-) Fold towel: (-)
Page et al. (2004) RCT (6) N _{start} =17 N _{end} =17 TPS=Chronic	E: mCIMT C1: Traditional Rehabilitation C2: No Therapy Duration: 5h, 5d/wk for 10wk	E vs C1: Fugl-Meyer Assessment (+exp) Action Research Arm Test (-) E1 vs C2: Fugl-Meyer Assessment (+exp)

		Action Research Arm Test (+exp) C1 vs C2: Fugl-Meyer Assessment (-) Action Research Arm Test (+con ₁)		
Page et al. (2002)	E1: mCIMT + physical and	Fugl-Meyer Assessment (+exp)		
RCT (5)	occupational therapy	Action Research Arm Test (+exp)		
N _{start} =14	E2: Traditional rehab			
N _{end} =14	C: No therapy			
TPS=Chronic	Duration: 30min, 3d/wk for 10wk			
	mCIMT in group or individual setting			
Doussoulin et al. (2017) RCT (5) N _{Start} =36 N _{End} =36 TPS=Chronic	E1: mCIMT group therapy E2: mCIMT individual therapy Duration: 3h/d for 10d	 Motor Activity Log (+exp) Action Research Arm Test (+exp) Functional Independence Measure (+exp) 		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

Conclusions about CIMT and mCIMT

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	CIMT may not have a difference in efficacy when compared to conventional therapy or motor relearning programmes for improving motor function during the acute/subacute phase poststroke.	9	Shah et al. 2016; Song et al. 2016; Thrane et al. 2015; Yoon et al. 2014; Dromerick et al. 2009; Boake et al. 2007; Page et al. 2005; Alberts et al. 2004; Plougman and Corbett 2004; Dromerick et al. 2000
1b	High intensity CIMT may not have a difference in efficacy when compared to low intensity CIMT on its own for improving motor function during the acute phase poststroke.	1	Dromerick et al. 2009
2	CIMT combined with visual biofeedback may produce greater improvements in motor function than conventional therapy on its own during the acute/subacute phase poststroke.	1	Seok et al. 2016
1b	CIMT combined with mirror therapy may not have a difference in efficacy when compared to CIMT on its own for improving motor function during the acute/subacute phase poststroke.	1	Yoon et al. 2014
1a	CIMT may produce greater improvements in motor function than conventional therapy or neurodevelopmental techniques during the chronic phase poststroke.	14	Huseyinsinoglu et al. 2012; Khan et al. 2011; Wu et al. 2011; Lin et al. 2010; Tariah et al. 2020; Lin et al. 2009; Dahl et al. 2008; Lin et al. 2008; Lin et al. 2007; Wu et al. 2007; Underwood et al. 2006; Wolf et al. 2006; Alberts et al. 2004; Suputitiada et al. 2004
1b	High intensity CIMT may not have a difference in efficacy when compared to low intensity CIMT on its own for improving motor function during the chronic phase poststroke.	3	Souza et al. 2015; Brogardh and Bengt, 2006; Wittenberg et al. 2003

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

	High intensity CIMT with/without cycloserine may		Nadeau et al. 2014
	not have a difference in efficacy when compared to	1	
1b	low intensity CIMT with/without cycloserine for	ı	
	improving motor function during the chronic phase		
	poststroke.		
	Early CIMT may produce greater improvements in	3	Wolf et al. 2010;
1a	motor function than delayed CIMT during the chronic	3	Sawaki et al. 2008; Wolf et al. 2008
	phase poststroke.		
	CIMT with the transfer package protocol may not	3	Takebayashi et al. 2013; Taub et al.
2	have a difference in efficacy for improving motor		2013; Taub et al. 2013; Gauthier et al.
	function when compared to traditional CIMT.		2008
	CIMT with donepezil may not have a difference in		Richards et al. 2006; Nadeau et al. 2004
2	efficacy for improving motor function when compared	2	Naueau et al. 2004
	to traditional CIMT or placebo.		
	Group based CIMT may produce greater	1	Doussoulin et al. 2018
2	improvements in motor function than one on one		2010
	CIMT sessions during the chronic phase poststroke.		
	There is conflicting evidence about the effect of		Yu et al. 2017; Kwakkel et al. 2016; Liu et al. 2016;
1a	mCIMT to improve motor function when compared to	9	Bang et al. 2014; El-Helow et al. 2014; Treger et al.
·u	conventional therapy or bilateral arm training		2012; Brogardh et al. 2009; Hammer and Lindmark,
	during the acute/subacute phase poststroke.		2009; Myint et al. 2007
	mCIMT combined with auditory feedback may		Bang et al. 2016
1b	produce greater improvements in motor function than	1	
	mCIMT alone during the chronic phase poststroke.		11:1
	mCIMT may produce greater improvements in motor		Hsieh et al. 2016; Yadav et al. 2016; Barzel et al. 2015;
1a	function than conventional therapy or bilateral arm	12	Bellay 2015; Smania et al. 2012; Wang et al. 2011;
Ia	training during the chronic phase poststroke.		Hayner et al. 2010; Page et al. 2008; Wu et al. 2007b;
			Yen 2005; Page et al. 2004; Page et al. 2002
	Group based mCIMT may produce greater	1	Doussoulin et al.
2	improvements in motor function than one on one		2017
	mCIMT sessions during the chronic phase poststroke.		

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1b	CIMT may not have a difference in effiacy when compared to conventional therapy or motor relearning programmes to improve dexterity during the acute/subacute phase poststroke.	3	Shah et al. 2016; Boake et al. 2007; Ro et al. 2006
1b	CIMT combined with mirror therapy may produce greater improvements in dexterity than CIMT on its own during the acute/subacute phase poststroke.	1	Yoon et al. 2014
1b	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm training for improving dexterity during the acute/subacute phase poststroke.	1	Kwakkel et al. 2016
1b	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm	1	Barzel et al. 2015

training for improving dexterity during the chronic	
phase poststroke.	

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
2	CIMT may produce greater improvements in spasticity than conventional therapy or motor relearning programmes during the acute/subacute phase poststroke.	1	Batool et al. 2015	
1b	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm training for improving spasticity during the acute/subacute phase poststroke.	1	Hammer and Lindmark, 2009	

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1b	CIMT not have a difference in efficacy when compared to conventional therapy or neurodevelopmental techniques for improving range of motion during the chronic phase poststroke.	1	Khan et al. 2011	
1b	mCIMT may produce greater improvements in range of motion than conventional therapy or motor relearning programmes during the acute/subacute phase poststroke.	1	Bang et al. 2014	

PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References	
1b	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm training for improving proprioception during the acute/subacute phase poststroke.	2	Kwakkel et al. 2016; Brogardh et al. 2009	

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
2	CIMT may produce greater improvements in muscle strength than conventional therapy or motor relearning programmes during the acute/subacute phase poststroke.	1	Alberts et al. 2004
2	CIMT combined with visual biofeedback may produce greater improvements in muscle strength than conventional therapy or motor relearning programmes during the acute/subacute phase poststroke.	1	Seok et al. 2016
1b	CIMT combined with mirror therapy may produce greater improvements in muscle strength than CIMT	1	Yoon et al. 2014

	on its own during the acute/subacute phase poststroke.		
1a	CIMT may produce greater improvements in muscle strength than conventional therapy or neurodevelopmental techniques during the chronic phase poststroke.	2	Alberts et al. 2004; Suputtitada et al. 2004
1b	Early CIMT may produce greater improvements in muscle strength than delayed CIMT during the chronic phase poststroke.	1	Sawaki et al. 2008
1a	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm training for improving muscle strength during the acute/subacute phase poststroke.	2	Kwakkel et al. 2016; Hammer and Lindmark, 2009

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	CIMT may not have a difference in efficacy when compared to conventional therapy or motor relearning programmes to improve performance of activities of daily living during the acute/subacute phase poststroke.	8	Shah et al. 2016; Batool et al. 2015; Thrane et al. 2015; Boake et al. 2007; Ro et al. 2006; Page et al. 2005; Ploughman and Corbett 2004; Dromerick et al. 2000
1b	High intensity CIMT may not have a difference in efficacy when compared to low intensity CIMT on its own for improving motor function during the acute phase poststroke.	1	Dromerick et al. 2009
1b	CIMT combined with mirror therapy may not have a difference in efficacy when compared to CIMT on its own for improving performance of activities of daily living during the acute/subacute phase poststroke.	1	Yoon et al. 2014
1a	CIMT may produce greater improvements in performance of activities of daily living than conventional therapy or neurodevelopmental techniques during the chronic phase poststroke.	10	Huseyinsinoglu et al. 2012; Khan et al. 2011; Wu et al. 2011; Lin et al. 2010; Lin et al. 2009; Dahl et al. 2008; Lin et al. 2008; Lin et al. 2007; Wu et al. 2007; Wolf et al. 2006
1b	High intensity CIMT may not have a difference in efficacy when compared to low intensity CIMT on its own for improving performance of activities of daily living during the chronic phase poststroke.	3	Souza et al. 2015; Brogardh and Bengt, 2006; Wittenberg et al. 2003
1b	High intensity CIMT with/without cycloserine may not have a difference in efficacy when compared to low intensity CIMT with/without cycloserine for improving performance of activities of daily living during the chronic phase poststroke.	1	Nadeau et al. 2014

1a	Early CIMT may produce greater improvements in performance of activities of daily living than delayed CIMT during the chronic phase poststroke.	2	Wolf et al. 2010; Wolf et al. 2008
2	CIMT with the transfer package protocol may produce greater improvements in performance of activities of daily living when compared to traditional CIMT during the chronic phase poststroke.	3	Takebayashi et al. 2013; Taub et al. 2013; Gauthier et al. 2008
2	CIMT with donepezil may not have a difference in efficacy when compared to traditional CIMT or placebo for improving activities of daily living.	2	Richards et al. 2006; Nadeau et al. 2004
2	Group based CIMT may produce greater improvements in performance of activities of daily living when compared to one on one CIMT sessions during the chronic phase poststroke.	1	Doussoulin et al. 2018
1a	mCIMT not have a difference in efficacy when compared to conventional therapy or bilateral arm training for improving performance of activities of daily living during the acute/subacute phase poststroke.	4	Yu et al. 2017; Liu et al. 2016; Treger et al. 2012; Myint et al. 2007
1b	mCIMT combined with auditory feedback may produce greater improvements in performance on activities of daily living than mCIMT alone during the chronic phase poststroke.	1	Bang et al. 2016
1a	mCIMT may produce greater improvements in performance of activities of daily living than conventional therapy or bilateral arm training during the chronic phase poststroke.	8	Hsieh et al. 2016; Yadav et al. 2016; Barzel et al. 2015; Smania et al. 2012; Hayner et al. 2010; Lin et al. 2007; Wu et al. 2007b; Wu et al. 2007c
2	Group based mCIMT may produce greater improvements in performance of activities of daily living than one on one mCIMT sessions during the chronic phase poststroke.	1	Doussoulin et al. 2017

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1b	CIMT combined with mirror therapy may not have a difference in efficacy when compared to CIMT on its own for stroke severity during the acute/subacute phase poststroke.	1	Yoon et al. 2014	

Constraint-induced movement therapy may be beneficial for upper limb rehabilitation in the chronic phase following stroke.

The literature is mixed regarding constraint-induced movement therapy for upper limb rehabilitation in the subacute/acute phase following stroke.

Modified constraint-induced movement therapy may be beneficial for upper limb rehabilitation in the chronic phase following stroke.

Modified constraint-induced movement therapy may not be beneficial for upper limb rehabilitation in the subacute/acute phase following stroke.

Higher and lower intensity constraint-induced movement therapy may have similar effects on upper limb function in the chronic phase following stroke.

Constraint-induced movement therapy in combination with other therapeutic approaches may be beneficial for upper limb rehabilitation following stoke.

Trunk Restraint

Reaching movements performed with the affected arm poststroke are often accompanied by compensatory trunk or shoulder girdle movements, which overextend the reach of the arm (Michaelsen et al. 2001). Restriction of compensatory trunk movements may encourage recovery of "normal" reaching patterns in the hemiparetic arm when reaching for objects placed within arm's length (Michaelsen & Levin, 2004). Ten RCTs (Baldwin et al. 2018; Bang et al. 2015; Lima et al. 2014; Wu et al. 2012a; Wu et al. 2012b; Thielman et al. 2010; Woodbury et al. 2009; Michaelsen et al. 2006; Michaelsen and Levin, 2004) have evaluated the effectiveness of trunk restraint combined with other training to improve the movement quality of reaching tasks.

Their methodological details and results are presented in Table 9.

Table 9. RCTs Evaluating Trunk Restraint Training for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	mCIMT + trunk restr	aint training
Baldwin et al. (2018) RCT (5) N _{start} =19 N _{end} = 14 TPS= Chronic E: mCIMT + trunk restrainit C: mCIMT Duration: 60min 5x/wk for 4wks		 Action Research Arm Test: (+exp) Fugl-Meyer Upper Extremity: (+exp) Modified Barthel Index: (+exp) Motor Activity Log: (+exp) Amount of Use: (+exp) Quality of Movement: (+exp)

		Maximal Elbow Extension Angle During Reaching:
Bang et al. (2015) RCT (9) Nstart=18 NEnd=18 TPS=Subacute Bang et al. (2014) RCT (8)	E: mCIMT + trunk resistant training C: mCIMT Duration: 30 min, 5 d/wk, for 4 wk E: mCIMT + trunk restrainit C: mCIMT	 (+exp) Action Research Arm Test (+exp) Fugl-Meyer Assessment (+exp) Modified Barthel Index (+exp) Motor Activity Log (+exp) Action Research Arm Test: (+exp) Fugl-Meyer Upper Extremity: (+exp)
N _{start} = 18 N _{end} = 18 TPS= Subacute	Duration: 60min 5x/wk for 4wks	Modified Barthel Index: (+exp) Motor Activity Log: (+exp)
Lima et al. (2014) RCT (8) N _{Start} =22 N _{End} =15 TPS=Chronic	E: mCIMT + trunk resistant training C: mCIMT Duration: Not Reported	 Motor Activity Log (-) Bilateral Activity Assessment Scale (-) Wolf Motor Function Test (-) Global strength (-)
Woodbury et al. (2009) RCT (5) N _{start} =11 N _{end} =11 TPS=Chronic	E: mCIMT + trunk restraint C: mCIMT Duration: 6 hr, 5d/wk for 2 wk	Hand path trajectories (+exp)
	Distributed CIT + trunk	restraint training
Wu et al. (2012a) RCT (5) N _{start} =57 N _{end} =57 TPS=Chronic	E1: Distributed constraint-induced therapy (dCIT) + trunk restraint E2: dCIT C: Usual care (neurodevelopmental treatment techniques) Duration: 2hr, 5d/wk for 3 wk	E1/E2 vs. C Action Research Arm Test (+exp, exp ₂) Frenchay Activities Index (+exp, exp ₂) Motor Activity Log (+exp, exp ₂) Stroke Impact Scale (+exp, exp ₂)
Wu et al. (2012b) RCT (5) Nstart=45 Nend=45 TPS=Chronic	E1: Distributed constraint-induced therapy (dCIT) + trunk restraint E2: dCIT C: Dose-matched control intervention (neurodevelopmental treatment techniques) Duration: 2hr, 3d/wk for 3 wk	E1/E2 vs. C • Motor Activity Log (+exp, +exp ₂) • Fugl-Meyer Assessment (+exp)
	Auditory fee	dback
Thielman (2010) RCT (4) Nstart=16 Nend=16 TPS=Chronic	E: Auditory feedback about trunk position C: Trunk restraint with external device Duration: 45 min, 3d/wk for 4 wk	Reaching Performance Scale Near Target (+exp) Reaching Performance Scale Far Target (-)
	Reach to grasp training wi	th trunk restraint
Michaelsen el al. (2006) RCT (7) Nstart=30 NEnd=10 TPS=Chronic	E: Object-related reach-to-grasp training + trunk restraint C: Unrestrained reach-to-grasp training Duration: 40 min, 3d/wk for 5 wk	Upper Extremity Performance Test (+exp) Fugl-Meyer Assessment (+exp) Box and Block Test (-)
Michaelsen & Levin (2004) RCT (5) Nstart=28 Nend=28 TPS=Chronic	E: Reach-to-grasp training + trunk restraint C: Unrestrained reach-to-grasp training Duration: 60 sessions over 8 weeks	Shoulder horizontal adduction (-) Shoulder flexion (-) Elbow Extension (+exp) H=hours: Min=minutes: RCT=randomized controlled trial: TPS=time

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

Conclusions about Trunk Restraint Training

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Trunk restraint combined with mCIMT may produce greater improvements in motor function than mCIMT .	4	Baldwin et al. 2018; Bang et al. 2015; Bang et al. 2014; Lima et al. 2014
2	Trunk restraint combined with distributed CIT may produce greater improvements in motor function than conventional rehabilitation.	2	Wu et al. 2012a; Wu et al. 2012b
2	There is conflicting evidence about the effect of auditory feedback regarding trunk position to improve motor function when compared to trunk restraint training.	1	Thielman 2010
1b	Trunk restraint combined with reaching training may produce greater improvements in motor function than reaching training alone.	2	Michaelsen & Levin 2004; Michaelsen et al. 2006

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Trunk restraint combined with reaching training compared to reaching training alone may not have a difference in efficacy for dexterity.	1	Michaelsen et al. 2006	

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1a	Trunk restraint combined with mCIMT may produce greater improvements in range of motion than mCIMT .	4	Baldwin et al. 2018; Bang et al. 2015; Bang et al. 2014; Lima et al. 2014	

MUSCLE STRENGTH				
LoE	LoE Conclusion Statement RCTs References			
1b	Trunk restraint combined with mCIMT may not have a difference in efficacy for producing greater improvements in muscle strength compared to mCIMT.	1	; Lima et al. 2014	

ACTIVITIES OF DAILY LIVING				
LoE	LoE Conclusion Statement RCTs References			
1a	Trunk restraint combined with mCIMT may produce greater improvements in performace of activities of daily living than mCIMT.	4	Baldwin et al. 2018; Bang et al. 2015; Bang et al. 2014; Lima et al. 2014	
2	Trunk restraint combined with distributed CIMT may produce greater improvements in performance of activities of daily living than conventional rehabilitation.	2	Wu et al. 2012a; Wu et al. 2012b	

Trunk restraint with reaching training or modified and distributed constraint induced moement therapy may improve some aspects of upper limb function following stroke.

Stretching Programs

Spasticity following stroke relates to hypertonicity or increased active tension of the muscle. Contracture may also occur as a result of spasticity and atrophic changes in the mechanical properties of muscles. Since surgery is the only treatment option once a contracture has developed, prevention is encouraged. Stretching may help to prevent contracture formation and, although well-accepted as a treatment strategy, although the evidence base is extremely limited for this intervention.

The methodological details and results of three RCTs evaluated stretching compared to conventional therpay (You et al. 2014; Tseng et al. 2007; Turton et al. 2005). Two RCTs examined stretching combined with NMES (Dejong et al. 2013; Sahin et al. 2012) and one RCT examined stretching verus NMES (King et al. 1996)

The methodological data evaluating 6 RCTs implementating stretching for upper extremity motor rehabilitation are presented in Table 10.

Table 10. RCTs Evaluating Stretching Interventions for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Sizestart	frequency per week for total	
Sample Size _{end}	number of weeks	
Time post stroke category		
You et al. (2014)	E1: Stretching program + joint	E1 vs C
RCT (5)	stabilizing exercise (combo)	Muscle thickness (+exp)
N _{Start} =45	E2: Stretching program	Motor assessment scale (+exp)
N _{End} =41	C: Traditional exercise therapy	E2 vs C
TPS=Chronic	Duration: 30min/d, 5d/wk for 8wk	Muscle thickness (+exp ₂) Material and a selection (+exp ₂)
		Motor assessment scale (+exp ₂) E1 vs E2
		Muscle thickness (-)
		Motor assessment scale (-)
Tseng et al. (2007)	E1: Nurse assisted range of motion	E1/E2 vs C
RCT (7)	exercise program	Joint angles (+exp, +exp ₂)
N _{start} =59	E2: Nurse supervised range of	• FIM (+exp, +exp ₂)
N _{end} =59	motion exercise program	Ι ΙΜ (ΤΟΧΡ, ΤΟΧΡ <u>2)</u>
TPS=Chronic	C: Usual care	
TF3=CITIONIC	Duration: 20-40min/d, 6d/wk for 4wk	
Turton et al. (2005)	E: Muscle stretching regime	Shoulder Rang of Motion: (-)
RCT (6)	C: Conventional care	Wrist Range of Motion: (-)
N _{start} =29	Duration: 1hr/d up to 12wks	Shoulder contracture (unaffected - affected side): (-)
Nend=25	post stroke	Wrist contracture (unaffected - affected side): (-)
TPS=Acute	post stroke	Times communities (unamented amented state). ()
Chap 11		
Str	etching combined with NMES verus	us NMEs or stretching alone
De Jong et al. (2013)	E: Arm stretch positioning + NMES	
RCT (8)	C: Sham stretch positioning + Sham	Modified Ashworth Scale (-)
N _{start} =46	NMES	()
N _{end} =46	Duration: 45 min (2x/d), 5d/wk, for 8	
TPS=Subacute	wk	
Sahin et al. (2012)	E: Stretching + NMES	Modified Ashworth Scale (+exp)
RCT (5)	C: Stretching	(
N _{start} =42	Duration: 5d/wk for 4wk	
N _{end} =38		
TPS=Chronic		
King et al. (1996)	E: Passive stretch	Tone reduction (+con)
RCT (4)	C: NMES	
N _{start} =21	Duration: Not reported	
N _{end} =NR		
TPS=Chronic		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Stretching Programs

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1b	There is conflicting evidence about the efiacy of Stretching programs compared to conventional therapy for producing improvements in spasticity.	2	You et al. 2014; Turton et al. 2005	

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

 $⁺exp_2$ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=}0.05$

1b	There is conflicting evidence on stretching combined with NMES for improving spasticity when compared to sham or stretching alone .	2	De jong et al. 2013; Sahin et al. 2012
2	Stretching may not have a difference in efficacy when compared to NMES for improving spasticity.	1	King et al. 1996

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence on Stretching programs for producing greater improvements in range of motion than conventional therapy .	2	Tseng et al. 2007; Turton et al. 2005	

ACTIVITIES OF DAILY LIVING				
LoE	LoE Conclusion Statement RCTs References			
1b	Stretching programs may produce greater improvements in performance of activities of daily living than conventional therapy.	2	You et al. 2014; Tseng et al. 2007	

The evidence surrounding stretching programs and stretching combined with NMES for improving upper limb function following stroke is mixed.

Orthotics

Upper limb orthotic devices such as splints or kinesthetic tape are generally used to minimize or prevent contractures, reduce spasticity and pain, and prevent edema poststroke (Lannin & Herbert, 2003). Arm weighted support rehabilitation through orthic devices can facilitate recovery of hand movements through performing semiautonomous rehabilitation programs (Bartolo et al. 2014).

25 RCTs were found that used orthotic devices for upper extremity motor rehabilitation (Liu et al. 2020; Ooi et al. 2020; Zheng et al. 2020; Huang et al. 2019; Jung et al. 2019; Comley-White et al. 2018; D'allAngol et al. 2018; Willigenburg et al. 2017; Choi et al. 2016a; Choi et al. 2016b; Lannin et al. 2016; Appel et al. 2015; Kim et al. 2015; Bartolo et al. 2014; Page et al. 2013; Barry et al. 2012; Basaran et al. 2012; Jung et al. 2011; Suat et al. 2011; Housman et al. 2009; Lannin et al. 2007; Lannin et al. 2003; Langlois et al. 1991; Poole et al. 1990; Rose et al. 1987), the methodological details and results of these RCTs are presented in Table 11.

	Table 11. RCTs Evaluating Orthotic Devices for Upper Extremity Motor Rehabilitation				
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)			
Dynamic	othotic devices versus conventional th	nerapy or task-specific training			
Willigenburg et al. (2017) RCT (4) Nstart=12 Nend=12 TPS=Chronic	E: Myoelectric brace C: Repetitive task-specific practice (RTP) Duration: 45min, 3d/wk for 8wks	Stroke Impact Scale: Arm: (-) Hand: (-) Recovery: (+exp) Kinematics reach out task: Range shoulder flex: (-) Range elbow extension: (-) Hand velocity: (-) Kinematics reach up task: Range shoulder flex: (-) Range elbow extension: (-) Hand velocity: (+con)			
Lannin et al. (2016) RCT (5) N _{Start} =9 N _{End} =6 TPS=Acute	E: Task-specific training + training with the Saebo-Flex device C: Task-specific training Duration: 45-60min/session, 1- 3sessions/d, 5-7d/wk for 4-12wk	 Motor Assessment Scale (-) Box and Block Test (-) Grip Strength (-) 			
Bartolo et al. (2014) RCT (8) Nstart=28 NEnd=28 TPS=Acute	E: Arm orthosis C: Conventional physiotherapy Duration: 30min/d, 6d/wk for 2wk	 Arm abduction (+exp) Arm adduction (+exp) Arm flexion (+exp) Arm extension (+exp) Normalized jerk (+exp) Fugl Meyer Assessment (-) Modified Ashworth Scale (-) 			
Page et al. (2013) RCT (6) N _{Start} =16 N _{End} =16 TPS=Chronic	E: Myomo brace C: Repetitive task practice Duration: 30min/d, 3d/wk for 8wk	 Fugl Meyer Assessment (-) Canadian Occupational Performance Measure (-) Stroke Impact Scale (-) 			
Barry et al. (2012) RCT (7) Nstart=22 Nend=19 TPS=Subacute	E: Dynamic hand orthosis C: Manual assisted therapy Duration: 15min/d, 4d/wk for 6wk	Grip strength (-) Action Research Arm Test (-) Box and Block Test (-) Stroke Impact Scale (-)			
Housman et al. (2009) RCT (5) N _{start} = 29 N _{end} = 23 TPS= Chronic	E: T-wrex gravity support orthosis C: Conventional therapy Duration: 45min, 3x/wk, 8wks	Fugle-Meyers Upper Extremity: (-) Motor Activity Log			
	Pressure gamrents versus conve	entional therapy			
Ooi et al. (2020) RCT (6) N _{start} = 46 N _{end} = 43 TPS= Subacute	E: Lycra pressure garment C: Conventional therapy Duration: 2hrs/wk, 6wk rehab + 6hrs/d of garment exercise therapy versus conventional the	Modified Ashworth Scale Wrist: (-) Finger: (-) Disabilities of Arm, Shoulder, Hand Outcome: (-) Jebsen Hand Function Test - Time: (-)			
Liu et al. (2020)	E: Sling exercise therapy	Barthel Index: (-)			
RCT (7) N _{start} = 50 N _{end} = 50 TPS= Subacute	C: Conventional therapy Duration: 30min, 5x/wk for 4wks	Fugl-Meyers Upper Extremity: (+exp)			

Jung et al. (2019)	E: Shoulder sling exercise	Subluxation: (+exp)
RCT (8)	C: Bimanual tracking	Shoulder Proprioception: (+exp)
N _{start} = 36	Duration: 40min, 5x/wk for 4wks	Fugl-Meyers Upper Extremity: (+exp)
N _{end} = 36		Manual Functional Test: (+exp)
TPS= Acute		
Chap 11		
Sta	atic orthotic (splint) versus convention	al therapy or sham splint
Choi et al. (2016a)	E: Hand Splints and a General	Modified Ashworth Scale (-)
RCT (5)	Rehabilitation Program	
N _{Start} =30	C: General Rehabilitation Program	
N _{End} =30	Duration: 30min/d, 5d/wk for 12wk	
TPS=Subacute		
Jung et al. (2011)	E: Hand stretching/splint device	Modified Ashworth Scale (+exp)
RCT (4)	C: No splint	
N _{Start} =21	Duration: 40min/d, 6d/wk for 3wk	
N _{End} =21		
TPS=Chronic		
Suat et al. (2011)	E: Hand splint	Forward reach (-)
RCT (6)	C: Conventional therapy	• Forward reactif (-)
N _{start} = 19	Duration: 2hrs/d for 6mo	
Nend= 19	Duration. 21115/0 for onto	
TPS= Chronic		
	E1: Extension splint	- Wright contracture ()
Lannin et al. (2007)	E1: Extension splint	Wrist contracture (-)
RCT (7)	E2: Neutral splint	
N _{start} =63	C: No splint	
N _{end} =63 TPS=Acute	Duration: 9-12h/d for 4wk	
)
Lannin et al. (2003)	E: Hand splint	Wrist flexor (-)
RCT (8)	C: No hand splint	Finger flexor (-)
N _{start} =28	Duration: up to 12h/d, 5d/wk for 4wk	
N _{finish} =27		
TPS=Subacute	 	
Poole et al. (1990)	E: Splint	Fugl Meyer Assessment (-)
RCT (5)	C: No splint	
N _{start} =18	Duration: 30min/d, 5d/wk for 3wk	
N _{end} =18		
TPS=Acute		
	Static splints versus each	
Choi et al. (2016b)	E: Dorsal Resting Hand Splint	Modified Ashworth Scale (+exp)
RCT (4)	C: Volar Resting Hand Splint	Active Range of Motion (+exp)
N _{Start} =52	Duration: 30min/d, 5dwk for 8wk	
N _{End} =52		
TPS=Chronic		
Ch11		
Basaran et al.(2012)	E1: Volar splint	E1 vs E2 vs C
RCT (6)	E2: Dorsal splint	Modified Ashworth Scale (-)
N _{start} =39	C: No splint	Passive range of motion (-)
Nend=39	Duration: up to 10h/d for 5wk	
TPS=Chronic		
Langlois et al. (1991)	E1: Spint 22hr/d	Spasticity (-)
RCT (3)	E2: Splint 12hr/d	- Opasitoty (-)
. ,		
N _{start} =9	E3: Splint 6hr/d	
Nend=9	Duration: 6, 12, or 22h/d for 4wk	
TPS=Chronic		
Rose et al. (1987)		
	E1: Dorsal orthosis	E1/E2 vs C
RCT (4)	E2: Volar orthosis	Passive range of motion (+exp)

	Duration: 2h	E2 vs C
	00 "0	Spontaneous flexion (-) A grate point
71 (0000)	3D versus "Regular"	
Zheng et al. (2020) RCT (7) N _{start} =44 N _{end} =40 TPS=Mixed	E: 3D orthosis C: Regular orthosis Duration: 6wks	 Passive Range of Motion: Extension: (+exp) Flexion: (-) Radial deviation: (-) Ulnar deviation: (-) Fugl-Meyer Upper Extremity: (+exp) Modified Ashworth Scale: (+exp)
	Taping and strapping techniques vers	` ''
Huang et al. (2019) RCT (6) N _{start} = 36 N _{end} = 31	E: Kinesio taping C: Conventional therapy Duration: 7d/wk tape - 40min stretch, 5d/wk for 3wks	Fugl-Meyers Upper Extremity Proximal: (-) Distal: (-) Modified Ashworth Scale: (-)
TPS= Subacute Comley-White et al. (2018) RCT (5) Nstart= 56 Nend= 33 TPS= Acute	E1: Longitudinal strapping E2: Circumferential strapping C: Conventional therapy Duration: 2wk s	 Brunnstrom (distal): (-) E1 Vs C Shoulder subluxation: (-) Modified Ashworth Scale: (-) Motor Assessment Scale Upper arm: (-) Hand: (-) Advanced hand: (-) E2 Vs C Shoulder subluxation: (-) Modified Ashworth Scale: (-) Motor Assessment Scale Upper arm: (-) Hand: (-) Advanced hand: (-) E1 Vs E2 Shoulder subluxation: (-) Modified Ashworth Scale: (-) Motor Assessment Scale Upper arm: (-) Hand: (-) Advanced hand: (-)
Dall'Agnol et al. (2018) RCT (7) N _{start} = 16 N _{end} = 16 TPS= Chronic	E: Kinesio tape + acupuncture C: Acupuncture Duration: 30min, 3x/wk for 12wks	 Motor Activity Scale Shoulder Adduction: (-) Shoulder Extensions: (-) Shoulder in Rotation: (-) Elbow flexion: (-) Pronation: (-) Wrist flex: (-) Thumb flexion: (-) Finger flexion (2,3,4,5): (-) Active Range of Motion: Shoulder Flexion: (-) Shoulder Extension: (-) Shoulder Abduction: (-) Elbow Extension: (-) Wrist extension: (-) Radial Deviation: (-) 3rd Finger Extension: (-) Wolf Motor Function Test (time): (-)
Appel et al. (2015) RCT (5) N _{start} = 20 N _{end} =17 TPS= Acute	E: Shoulder strap C: Placebo Duration: Straps with conventional therapy: 4.5hr, 5x/wk for 4wks	Action Research Arm Test: (-)

Kim et al. (2015)	E: Taping	Manual Function Test (+)
RCT (7)	C: No taping	 Modified Motor Assessment Scale (+exp)
N _{Start} =30	Duration: 30min/d, 3d/wk for 28wk	
N _{End} =30		
TPS=Subacute		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

+exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

Conclusions about Orthotic Devices

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	Dyanmic Orthotic devices may not have a difference in efficacy when compared to conventional therapy , repetitive task practice for improving motor function.	5	Willigenburg et al. 2017; Bartolo et al. 2014; Page et al. 2013; Barry et al. 2012; Housman et al. 2009	
1b	Pressure garments may not have a difference in efficacy when compared to conventional therapy for improving motor function.	1	Ooi et al. 2020	
1a	Sling exercise therapy may improve motor function when compared to conventional therapy or bimanual training.	2	Liu et al. 2020; Jung et al. 2019	
1b	Static splints may not have a difference in efficacy when compared to conventional therapy or sham splints for improving motor function	2	Staut et al. 2011; Poole et al. 1990	
1b	3-Dimensional orthotics may improve motor fuinction when compared to regular orthotics .	1	Zheng et al. 2020	
1a	Tapping and strapping techniques may not have a difference in efficacy when compared to conventional or sham therapy for imporving motor function.	3	Huang et al. 2019; Appel et al. 2015; Kim et al. 2015	

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Dyanmic Orthotic devices may not have a difference in efficacy when compared to conventional therapy, repetitive task practice for improving dexterity	2	Lannin et al. 2016; Barry et al. 2012	
1b	Pressure garments may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	1	Ooi et al. 2020	

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1b	Dyanmic Orthotic devices may not have a difference in efficacy when compared to conventional therapy , repetitive task practice for improving spasticity.	1	Bartolo et al. 2014	

⁺exp $_2$ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

1b	Pressure garments may not have a difference in efficacy when compared to conventional therapy , for improving spasticity.	1	Ooi et al. 2020
1b	Static splints may not have a difference in efficacy when compared to conventional therapy or sham splints for spasticity.	3	Choi et al. 2016; Jung et al. 2011; Lanin et al. 2007
1b	There is conflicting evidence about the effect of the duration of splinting and type of splinting (dorsal or volar) for improving spasticity.	3	Choi et al 2016; Basaran et al. 2012; Langlois et al. 1991
1b	3-Dimensional orthotics may improve spasticity when compared to regular orthotics .	1	Zheng et al. 2020
1a	Tapping and strapping techniques may not have a difference in efficacy when compared to conventional or sham therapy for imporving spasticity.	1	Comley-white et al. 2018

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1a	Dyanmic Orthotic devices may improve range of motion when compared to conventional therapy or repetitive task practice .	1	Bartolo et al. 2014;
1b	Sling exercise therapy may improve range of motion function when compared to conventional therapy or bimanual training.	2	Liu et al. 2020; Jung et al. 2019
1b	Static splints may not have a difference in efficacy when compared to conventional therapy or sham splints for range of motion.	1	Lanin et al. 2007
1b	There is conflicting evidence about the effect of the duration of splinting and type of splint (dorsal or volar) for improving range of motion.	3	Choi et al 2016; Basaran et al. 2012; Rose et al. 1987
1b	3-Dimensional orthotics may not have a difference in efficacy when compared to regular orthotics for improving range of motion.	1	Zheng et al. 2020

PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References	
1b	Sling exercise therapy may improve proprioception when compared to conventional therapy or bimanual training.	1	Jung et al. 2019	

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Dyanmic Orthotic devices may not have a difference in efficacy when compared to conventional therapy , repetitive task practice for improving performance on activities of daily living.	5	Willigenburg et al. 2017; Lanin et al. 2016; Page et al. 2013; Barry et al. 2012; Housman et al. 2009

1b	Sling exercise therapy may not have a difference in efficacy when compared to conventional therapy or bimanual training for improving performance on activities of daily living.	1	Liu et al. 2020
1a	There is conflicting evidence about the effect of Tapping and strapping techniques when compared to conventional or sham therapy for performance on activities of daily living.	2	Comley-white et al. 2018; Kim et al. 2015

MUSCLE STRENGTH						
LoE	LoE Conclusion Statement RCTs References					
1a	Dyanmic Orthotic devices may not have a difference in efficacy when compared to conventional therapy , repetitive task practice for muscle strength.	2	Lannin et al. 2016; Barry et al. 2012			

Orthotics may not be beneficial for upper limb rehabilitation following stroke.

Mirror Therapy

Adopted from: https://www.saebo.com/shop/saebo-mirror-box/

In mirror therapy, a mirror is placed beside the unaffected limb, blocking view of the affected limb and creating an illusion of two limbs as if they are both functioning normally. Mirror therapy functions through a process known as mirror visual feedback wherein the movement of one limb is perceived as movement from the other limb (Deconinck et al. 2015). In the brain, mirror therapy is thought to induce neuroplastic changes that promote recovery by increasing excitability of the ipsilateral motor cortex which projects to the paretic limb (Deconinck et al. 2015). Ramachandran et al. (1995) first used this method to understand the effect of vision on phantom sensation and pain in arm amputees. This method has since been adapted from its original use as a means to enhance upper-limb function following stroke (Sathian et al. 2000).

A total of 47 RCTs were found that evaluated mirror therapy for upper extremity rehabilitation poststroke. Of these, 30 RCTs looked at mirror therapy compared to conventional rehabilitation or the Bobath concept approach (Chinnavan et al. 2020; Madhoun et al. 2020; Antoniottie et al. 2019; Bai et al. 2019; Chauhari et al. 2019; Ding et al. 2019; Jan et al. 2019; Arya et al. 2018; Ding et al. 2018; Oliveira et al. 2018; Radajewska et al. 2017; Colomer et al. 2016; Gurbuz et al. 2016; Kim et al. 2016; Lim et al. 2016; Pervane Vural et al. 2016; Arya et al. 2015; Cristina et al. 2015; Park et al. 2015; Invernizzi et al. 2013; Radajewska et al. 2013; Timmerman et al. 2013; Wu et al. 2013a; Lee et al. 2012; Michielsen et al. 2011; Dohle et al. 2009; Yavuzer et al. 2008; Altschuler et al. 1999). Two RCTs looked at mirror therapy compared to bilateral arm training (Fong et al. 2019; Li et al. 2109). Two RCTs looked at mirror therapy with bilateral arm training (Rodrigues et al. 2016; Samuelkamaleshkumar et al. 2014). Two studies looked at mirror therapy combined with: transcranial direct current stimulation (Jin et al. 2019; D'agata et al. 20916), one study at functional electrical stimulation (Kim et al. 2015), two studies at neuromuscular electrical stimulation (Amasyali et al. 2016; Yun et al. 2011). Three studies looked at mirror therapy with mesh glove (Lee et al. 2015; Lin et al. 2014a; Lin et al. 2014b) rTMS (Ji et al. 2014), and in a group or individual setting (Thieme et al. 2012). One RCT looked at movement versus task-based mirror therapy (Bai et al. 2019). One RCT looked at mirror

therapy combined with strength versus strength alone (Ehrensberger et al. 2019). One study looked at mirror Therapy combined with extracorpeal shockwave (Guo et al. 2019).

The methodological details and results of these 45 RCTs are presented in Table 12.

Table 12. Summary of RCTs Evaluating Mirror Therapy for the Upper Extremity Motor Rehabilitation

Rehabilitation		
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Mi	rror therapy compared to conventior	nal rehabilitation
Chinnavan et al. (2020) RCT (4) N _{start} = 25 N _{end} = 25 TPS= Chronic	E: Mirror Therapy C: Conventional Therapy Duration: 45min, 3x/wk for 6wks	Fugl-Meyers Assessment: (+exp) Functional Independence Measure: (+exp)
Madhoun et al. (2020) RCT (5) Nstart= 35 Nend= 30 TPS= Subacute	E: Mirror therapy C: Conventional therapy Duration: 25min, 7d/wk for 4wks	Brunnstrom Recovery Stages Upper extremity: (-) Hand: (-) Barthel Index: (-) Fugl-Meyer Upper Extremity: (+exp) Modified Ashworth Scale: Elbow: (-) Wrist: (-) Finger: (-) Thumb - extension and flexion: (-)
Antoniotti et al. (2019) RCT (7) Nstart= 40 Nend= 35 TPS= Acute	E: Mirror therapy C: Sham therapy Duration: 30min 5x/wk for 4wks	Fugl-Meyers Upper Extremity: (-) Action Research Arm Test: (-) Functional Independence Measure: (-)
Bai et al. (2019) RCT (7) Nstart=34 Nend= 34 TPS= Subacute	E1: Movement based mirror therapy E2: Task based mirror therapy C: Conventional therapy Duration: 30min 5x/wk for 4wks	E1 vs C Fugl-Meyers Upper Extremity: (+exp1) Wolf Motor Function Test: (-) Grip strength: (-) Modified Barthel Index: (-) Modified Ashworth Scale Arm: (-) Hand: (-) E2 vs C Fugl-Meyers Upper Extremity: (-) Modified Barthel Index: (-) Modified Barthel Index: (-) Modified Barthel Index: (-) Modified Ashworth Scale Arm: (-) Hand: (-) E1 vs E2 Fugl-Meyers Upper Extremity: (+exp1) Wolf Motor Function Test: (-) Grip strength: (-) Modified Barthel Index: (-) Modified Barthel Index: (-) Modified Barthel Index: (-) Modified Ashworth Scale Arm: (-) Hand: (-)
Chaudhari et al. (2019) RCT (5)	E: Mirror therapy C: Conventional therapy	Brunstom Recovery Stage: Hand (+exp)

	ID :: 0/1/4: :: ::	
N _{start} = 50	Duration: 3x/wk, 4wks conventional, +	Upper Extremity (+exp)
N _{end} = 50/Not reported	mirror (nr)	
TPS= Not reported		
Ding et al. (2019)	E: Camera mirror therapy	Fugl-Meyers Assessment:
RCT (7)	C: Conventional therapy	Upper Limb: (+exp)
N _{start} = 20	Duration: 1.5hrs, 5d/wk, 4wks	Wrist & Hand: (+exp)
N _{end} = 19	Baration: 1.0mo, ou/wk, 1wko	` ' '
TPS= Subacute		Functional Independence Measure: (+exp)
1F3= Subacute		Self care: (-)
NAME OF S		Sphincter control (-)
Multi-Site		Transfers: (+exp)
		Locomotion: (+exp)
		Communication: (-)
		` '
		Social cog ability: (-)
		Manual Muscle Testing: (-)
		Modified Ashworth Scale: (-)
Jan et al. (2019)	E: Mirror therapy	Motor Assessment Scale
RCT (5)	C: Motor relearning program	Upper limb: (+con)
N _{start} = 66	Duration: 2hrs, 3x/wk, 6wks	• Hand: (+con)
Nend= 66	Buration. Zins, 5% wk, 6wks	Advance Hand: (+con)
TPS= Not reported		Advance Hand. (+con)
Arya et al. (2018)	E: Mirror therapy	Fugl-Meyer Upper Extremity: (+exp)
RCT (8)	C: Conventional therapy	
N _{start} = 31	Duration: 40min, 5x/wk for 6wks	
N _{end} =30	·	
TPS= Chronic		
Chan et al. (2018)	E: Mirror therapy	Fugl-Meyer Assessment (-)
RCT (8)	C: Conventional therapy	• Proximal (-)
N _{start} = 41		• Wrist (-)
Nend= 35	Duration: 1hr, 5d/wk for 4wks	
		• Hand (-)
TPS= Acute		• Cordination (-)
		Wolf Motor Function Test
		• Time (-)
		Score (-)
Ding et al. (2018)	E: Camera mirror therapy	Fugl Meyers Upper Limb: (+exp)
RCT (7)	C: Conventional therapy	Barthel's Index: (-)
N _{start} = 90	Duration: 1hr, 5d/wk, 4wks	Reaction Time: (-)
Nend= 79	, ,	Accuracy: (-)
TPS= Subacute		- Alouady. ()
	C1. Mirror thorony	E4.Va.C
Oliveira et al. (2018)	E1: Mirror therapy	E1 Vs C
RCT (3)	E2: Vibration therapy	Rivermead Mobility Index: (+exp1)
N _{start} = 21	C: Conventional therapy	Jebsen Hand Function Test - Time: (+exp1)
N _{end} = 21	Duration: 15min, 3x/wk, 4wks	Wolf Motor Function Test
TPS= Chronic		• Time: (+exp1)
		• Score: (+exp1)
		, , ,
		<u>E2 Vs C</u>
		Rivermead Mobility Index: (+exp2)
		Jebsen Hand Function Test - Time: (+exp2)
		Wolf Motor Function Test
		• Time: (+exp2)
		• Score: (+exp2)
		<u>E1 Vs E2</u>
		Rivermead Mobility Index: (-)
		Jebsen Hand Function Test - Time: (-)
		Wolf Motor Function Test
		• Time: (-)
		• Score: (-)
D 1: 1 (00/=)	E 14: (1	
Radajewska et al. (2017)	E: Mirror therapy	Frenchay Arm Test (+exp)
RCT (5)	C: Conventional rehabilitation	

N- CO	Duration, 20min/d Ed/uk for 200k	
Nstart=60 Nend=60	Duration: 30min/d, 5d/wk for 3wk	
TPS=Subacute		
Colomer et al. (2016)	E: Mirror Therapy	Nottingham Sensory Assessment (+exp)
RCT (7)	C: Passive Mobilization	Fugl-Meyer Assessment (-)
N _{Start} =34	Duration: 45min/d, 3d/wk for 8wk	
N _{End} =31		
TPS=Chronic		
Gurbuz et al. (2016)	E: Mirror Therapy	Brunnstrom Recovery Stage (-)
RCT (6)	C: Conventional Therapy	Fugl-Meyer Assessment (+exp)
N _{Start} =31	Duration: 60-120min/d, 5d/wk for 4wk	Function Independence Measure (-)
N _{End} =31		
TPS=Subacute		
Kim et al. (2016)	E: Mirror Therapy	Action Research Arm Test (+exp)
RCT (5)	C: Conventional Therapy	Fugl-Meyer Assessment (+exp)
Nstart=25 Nend=25	Duration: 30min/d, 5dwk for 4wk	Box and Block Test (+exp) Functional Independence Magazine (+exp)
NEnd=25 TPS=Chronic		Functional Independence Measure (+exp)
	C. Missas Thospas	Fire Marian Assessment (Laura)
Lim et al. (2016) RCT (5)	E: Mirror Therapy C: Sham Therapy	Fugl-Meyer Assessment (+exp) Modified Barthel Index (+exp)
N _{Start} =60	Duration: 20min/d, 5d/wk for 4wk	Brunnstrom Recovery Stage (-)
N _{End} =60	Daration. Zoniin/a, Ja/WK 101 4WK	Didilibitoff Necovery Stage (*)
TPS=?		
Pervane Vural et al. (2016)	E: Mirror Therapy	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Conventional rehabilitation	Brunnstrom Recovery Stage (+exp)
N _{Start} =30	Duration: 4h/d, 5d/wk for 4wk	Functional Independence Measure (+exp)
N _{End} =30	2 4.44.5	Modified Ashworth Scale (+exp)
TPS=Subacute		
Arya et al. (2015)	E: Task-based mirror therapy	Fugl-Meyer Assessment (+exp)
RCT (8)	C: Standard Rehabilitation	
N _{Start} =33	Duration: 90min/d, 5d/wk for 8wk	
N _{End} =32		
TPS=Chronic		
Cristina et al. (2015)	E: Mirror therapy	Modified Ashworth Scale: writ (+exp)
RCT (6)	C: Conventional therapy	Bhakta finger flexion scale (+exp)
N _{Start} =15	Duration: 30min/d, 5d/wk for 6wk	
N _{End} =15		
TPS=Subacute		
Park et al. (2015)	E: Mirror therapy	Manual Function Test (+exp)
RCT (6)	C: Non-reflecting mirror	• FIM (+exp)
N _{Start} =30	Duration: 5d/wk for 6wk	
N _{End} =30 TPS=Chronic		
	C. Mirror thorony	Action Research Arm Test (+exp)
RCT (7)	E: Mirror therapy C: Conventional therapy	
N _{Start} =26	Duration: 30-60min/d, 5d/wk for 4wk	Motricity Index (+exp) Fugl-Meyer Assessments (+exp)
NStart=25 NEnd=25	Duration. 30-00min/u, 30/wk for 4WK	Tugi-weyer Assessments (+exp)
TPS=Acute		
Radajewska et al. (2013)	E: Mirror therapy	Frenchay Arm Test (+exp)
RCT (3)	C: Conventional therapy	1. Tollonay / till 1 toot (10xp)
N _{Start} =60	Duration: 30min/d, 5d/wk for 3wk	
N _{End} =60		
TPS=?		
Timmerman et al. (2013)	E: Mirror therapy	Frenchay Arm Test (-)
RCT (7)	C: Bobath concept	Functional Assessment Scale (-)
N _{Start} =42	Duration: 30min/d, 3d/wk for 6wk	Wolf Motor Function Test (-)
N _{End} =42		
TPS=Subacute		
Wu et al. (2013)	E: Mirror therapy	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Conventional therapy	Modified Ashworth Scale (-)

N. 22	Duration 4 Eh/d Ed/od for 400	ADII HAND ()
Nstart=33 Nend=21	Duration: 1.5h/d, 5d/wk for 4wk	ABILHAND (-)
TPS=Chronic		
In et al. (2012)	E: Virtual mirror therapy	Fugl-Meyers Upper Extremity: (+exp)
RCT (4)	C: Sham	Modified Ashworth Scale: (-)
N _{start} = 24	Duration: 30min, 5x/wk, 4wk	` '
N _{end} = 19	Duration: Somin, SAWK, 4WK	Box and Block Test: (-)
TPS= Chronic		Jebsen Hand Function Test: (-)
		Manual Function Test: (-)
Lee et al. (2012)	E: Mirror therapy	Fugl-Meyer Assessment (+exp)
RCT (5)	C: Standard care	Brunnstrom recovery stages (+exp)
N _{start} =28	Duration: 50min/d, 5d/wk for 4wk	Manual Function Test (+exp)
Nend=26		
TPS=Subacute		
Michielsen et al. (2011)	E: Mirror therapy	Action Research Arm Test (-)
RCT (7)	C: Control therapy	ABILHAND (-)
N _{Start} =40	Duration: 1h/d, 5d/wk for 6wk	• Grip force (-)
N _{End} =40		Tardieu Scale (-)
TPS=Chronic		Fugl-Meyer Assessment (+exp)
Dohle et al. (2009)	E: Mirror therapy	Fugl-Meyer Assessment (-)
RCT (7)	C: Control therapy	
N _{Start} =36	Duration: 30min/d, 5d/wk for 6wk	
N _{End} =36		
TPS=Acute		
Yavuzer et al. (2008)	E: Mirror Therapy	Brunnstrom Recovery Stages (+exp)
RCT (7)	C: Sham Therapy	Funtional Indepence Measure (+exp)
N _{Start} =40	Duration: 2-5h/d, 5d/wk for 4wk	Modified Ashworth Scale (-)
Nend=40		
TPS=Subacute		
Altschuler et al. (1999)	E: Mirror therapy	Brunnstrom Recovery Stage (+exp)
RCT (7)	C: Sham therapy	Fugl Meyer self-care Score (+exp)
N _{Start} =40	Duration: 30min/d, 6d/wk for 4wk	Modified Ashworth Scale (-)
N _{End} =40		
TPS=Chronic		
	Mirror therapy versus bilateral a	
Fong et al. (2019)	E: Mirror therapy	Fugl-Meyers Assessment
RCT (7)	C: Bilateral arm training	Upper Limb: (-)
N _{start} = 101	Duration: 30min, 2x/wk for 6wks	Hand: (+exp)
N _{end} = 96		Action Research Arm Test
TPS= Chronic		Grasp:(-)
		• Grip: (-)
		• Pinch: (-)
		• Gross: (-)
		Wolf Motor Function Test:
		Functional Ability Sub Score:(-)
		Grip Sub Score: (-)
Li et al. (2019)	E: Mirror therapy	Fugl-Meyer Upper Extremity: (-)
RCT (8)	C: Bilateral arm training	Proximal: (-)
N _{start} = 23	Duration: 130min, 3d/wk for 4wks	• Distal: (-)
N _{end} = 20	(+home practice 5d/wk 30-40min)	Revised Nottingham Sensory Assessment -
TPS= Chronic		Tactile total: (-)
		Chedoke Arm and Hand Activity Inventory: (-)
		Motor Activity Log
		Amount of use: (-)
		Quality of movement: (-)
		1 1
		Stroke Impact Scale: (+exp)
	Mirror therapy combined with bilat	
Rodrigues et al. (2016)	E: Mirror therapy and Bilateral	Upper extremity function test (-)
RCT (7)	Training C: Bilateral Training	
N _{Start} =16		

N _{End} =16 TPS=Chronic	Duration: 1h/d, 3d/wk for 4wk	
Samuelkamaleshkumar et al. (2014) RCT (7) N _{Start} =20 N _{End} =20 TPS=Subacute	E: Mirror therapy + bilateral arm training C: Control group Duration: 6h/d, 5d/wk for 3wk	Fugl-Meyer Assessment (+exp) Brunnstrom Recovery Stage (+exp) Box and Block Test (+exp) Modified Ashworth Scale (-)
- Cubacute	Mirror therapy combined with	h tDCS
Jin et al. (2019) RCT (8) Nstart= 30 Nend= 28 TPS= Chonic	E1: Dual tDCSs + mirror therapy (before) E2: Dual tDCSs + mirror therapy (during) C: Sham + mirror therapy Duration: 30 min (stimulation and mirror each) 5x/wk, 2wks	E1 Vs C Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (-) Box and Block Test: (-) E2 Vs C Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (+exp2) Box and Block Test: (-) E1 Vs E2 Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (+exp2) Box and Block Test: (-) Box and Block Test: (-)
D'Agata et al. (2016) RCT crossover (7) Nstart= 36 Nend= 36 TPS= Chronic	E1: rTMS E2: tDCS + Mirror therapy C: Sham + mirror therapy Duration: 5x/wk, 2wks (6mo washout for E1 and E2 groups)	E1 Vs C Action Research Arm Test: (-) E2 Vs C Action Research Arm Test: (-) E1 Vs E2 Action Research Arm Test: (-) Action Research Arm Test: (-)
Mirro	or therapy combined with functional e	electrical stimulation
Kim et al. (2015) RCT (6) N _{Start} =28 N _{End} =23 TPS=Chronic	E: FES + mirror therapy C: FES + sham mirror therapy Duration: 30min/d, 5d/wk for 4wk	Box and Block Test (-) Fugl-Meyer Assessment (+exp) Brunnstrom Recovery Stage (-) Manual Function Test (+exp)
	herapy combined with neuromuscula	
Amasyali et al. (2016) RCT (7) Nstart= 24 Nend= 25 TPS= Subacute	E: Mirror therapy + NMES E2: EMG + NMES C: Conventional physiotherapy Duration: 30min 5x/wk for 3 wks	E1 Vs C Wrist Extension: (+exp1) Grip Force: (-) Box and Block Test: (+exp1) Fugl-Meyers Upper Extremity: (+exp1) Shoulder/Elbow: (-) Wrist: (-) Hand: (-) Coordination: (-) E2 Vs C Wrist Extension: (+exp2) Grip Force: (-) Box and Block Test: (-) Fugl-Meyers Upper Extremity: (-) Shoulder/Elbow: (-) Wrist: (-) Hand: (-) Coordination: (-) E1 Vs E2 Wrist Extension: (-) Grip Force: (-) Box and Block Test: (+exp1) Fugl-Meyers Upper Extremity: (-) Grip Force: (-) Box and Block Test: (+exp1) Fugl-Meyers Upper Extremity: (-) Wrist: (-) Hand: (-) Coordination: (-)

)		F. F. F. F.			
Yun et al. (2011)	E1: Cyclic NMES + mirror therapy	E1 vs. E2/E3			
RCT (4) N=60	E2: Cyclic NMES E3: Mirror therapy	Fugl-Meyer Assessment (+exp)Hand flexion (-)			
TPS=Acute	Duration: 30min/d, 5d/wk for 3wk	Wrist flexion (-)			
TFS=Acute	Duration. Sommon, Surwich Swk	Wrist nexion (-) Wrist extension (-)			
	Mirror therapy combined with mesh glove				
Lee et al. (2015)					
RCT (7)	Afferent Stimulation	Extensor Digitorum Muscle Tone (+exp)			
N _{Start} =48	E2: Mirror Therapy	E1/C vs E2			
N _{End} =47	C: Mirror Therapy with Sham	Box and Block Test: (+exp, +con)			
TPS=Chronic	Stimulation	Muscle stiffness on the flexor carpi radialis			
11 0-01110	Duration: 90min/d, 5d/wk for 4wk	(+exp, +con)			
	Baration: commya, carmition into	Functional Independence Measure (+exp,			
		+con)			
		Fugl-Meyer Assessment (-)			
		Revised Nottingham Sensory Assessment (-)			
Lin et al. (2014a)	E: Mirror therapy + Mesh glove	Modified Ashworth Scale (-)			
RCT (7)	C: Mirror therapy	Box and Block Test (+exp)			
N _{Start} =16	Duration: 90min/d, 5d/wk for 4wk	Functional Independence Measure (-)			
N _{End} =16	· ·	Action Research Arm Test (+exp)			
TPS=Chronic					
Lin et al. (2014b)	E1: Mirror therapy + Mesh glove	E1 vs C			
RCT (7)	E2: Mirror therapy	Fugl-Meyer Assessment (+exp)			
N _{Start} =43	C: Therapeutic exercises	E1 vs E2 & E1 vs C			
N _{End} =42	Duration: 90min/d, 5d/wk for 4wk	Box and Block Test (+exp)			
TPS=Chronic		<u>E1 vs E2</u>			
		Wolf Motor Function Test (-)			
	Mirror therapy combined with	th rTMS			
Ji et al. (2014)	E1: Mirror therapy + rTMS	<u>E1 vs. E2</u>			
RCT (7)	E2: Mirror therapy	 Fugl-Meyer Assessment (+exp) 			
N _{Start} =35	C: Sham therapy	Box and Block Test (+exp)			
N _{End} =35	Duration: 30min/d, 5d/wk for 4wk	E2 vs. C			
TPS=Chronic		Fugl-Meyer Assessment (+exp ₂)			
	Cuerra ve in dividual minuan t	Box and Block Test (+exp ₂) the approximate and the approximate are the approxi			
Thioma et al. (2012)	Group vs individual mirror t E1: Individual mirror therapy	Action Research Arm Test (-)			
Thieme et al. (2012) RCT (6)	E2: Group mirror therapy	Fugl-Meyer Assessment (-)			
N _{Start} =60	C: Sham mirror therapy	Barthel Index (-)			
N _{End} =49	Duration: 30min/d, 4dwk for 5wk	Stroke Impact Scale (-)			
TPS=Subacute	Buration. Somma, 4awk for Swk	E1 vs. E2			
11 0=Oubacute		Modified Ashworth Scale (+exp)			
		incumou / termorar coare (/ exp)			
	Movement vs Task Based Mirror				
Bai et al. (2019)	E1: Movement based mirror therapy	E1 vs C			
RCT (7)	E2: Task based mirror therapy	Fugl-Meyers Upper Extremity: (+exp1)			
N _{start} =34	C: Conventional therapy	Wolf Motor Function Test: (-)			
N _{end} = 34	Duration: 30min 5x/wk for 4wks	Grip strength: (-)			
TPS= Subacute		Modified Barthel Index: (-)			
		Modified Ashworth Scale			
		• Arm: (-)			
		• Hand: (-)			
		E2 vs C Fugl-Meyers Upper Extremity: (-)			
		Wolf Motor Function Test: (-)			
		Grip strength: (-)			
		Modified Barthel Index: (-) Modified Ashworth Scale			
		• Arm: (-) • Hand: (-)			
		• Hand. (-) E1 vs E2			
		L 1 49 LZ			

	 Fugl-Meyers Upper Extremity: (+exp1) Wolf Motor Function Test: (-) Grip strength: (-) Modified Barthel Index: (-) Modified Ashworth Scale Arm: (-) Hand: (-) 			
-	Mirror combined with Strength T			
Ehrensberger et al. (2019) RCT (7) N _{start} = 35 N _{end} = 32 TPS= Chronic	E: Mirror + strength therapy C: Strength therapy only Duration: 20min, 3x/wk for 4wks	 Isometric Strength: (-) Modified Ashworth Scale (Shoulder, Elbow, Wrist): (-) Chedoke Arm and Hand Activity: (-) Abihland: (-) London Handicap Scale: (-) 		
Mirror Therapy combined with e	extracorpeal shockwave versus conve	entional therapy or mirror/shockwave alone		
Guo et al. (2019) RCT (6) N _{start} = 120 N _{end} = 120 TPS=Chronic	E1: Mirror therapy + extracorporeal shock E2: Mirror therapy E3: shock alone C: Conventional therapy Duration: 30min 5d/wk, 4wks conv + 20min 5d/wk, 4wks additional	E1 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp1) Modified Ashworth Scale: (+exp1) E2 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp2) Modified Ashworth Scale: (-) E3 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp3) Modified Ashworth Scale: (+exp3) E1 vs E2 Vs E3 Fugl-Meyer Upper Extremity Assessment: (+exp1) Modified Ashworth Scale: (+exp1)		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

- +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group
- indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

Conclusions about Mirror Therapy

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1 a	Mirror therapy may produce greater improvements in motor function than conventional therapy.	27	Chinnavan et al. 2020; Madhoun et al. 2020; Antoniotti et al. 2019; Bai et al. 2019; Chaudhai et al. 2019; Ding et al. 2019; Guo et al. 2019; Arya et al. 2018; Chan et al. 2018; Ding et al. 2018; Oliveira et al. 2018; Colomer et al. 2016; Gurbuz et al. 2016; Kim et al. 2016; Lim et al. 2016; Pervane Vural et al. 2016; Arya et al. 2014; Invernizzi et al. 2013; Timmerman et al. 2013; Wu et al. 2013; Iin et al. 2012; Lee et al. 2012; Michielsen et al. 2011; Dohle et al. 2009; Altschuler et al. 1999	
1a	Mirror therapy may not have a difference in efficacy compared to bilateral arm training for improving motor function.	2	Fong et al. 2019; Li et al 2019	

1a	There is conflicting evidence about the effect of mirror therapy combined with bilateral arm training to improve motor function when compared to bilateral arm training or conventional therapy.	2	Rodrigues et al. 2016; Samuelkamaleshkumar et al. 2014
1a	Mirror therapy combined with tDCS may not have a difference in efficacy compared to sham mirror therapy combined with tDCS for improving motor function.	2	Jin et al. 2019; D'Agata et al. 2016
1b	Mirror therapy combined with high frequency rTMS may produce greater improvements in motor function than mirror therapy on its own or sham stimulation.	1	Ji et al. 2014
1b	Mirror therapy combined with FES may produce greater improvements in motor function than sham mirror therapy with FES.	1	Kim et al. 2015
1b	Mirror therapy combined with cyclic NMES may produce greater improvements in motor function than mirror therapy or cyclic NMES on their own.	2	Amasyali et al. 2016 Yun et al. 2011
1a	There is conflicting evidence about the effect of mirror therapy combined with Mesh Gloves to improve motor function when compared to mirror therapy on its own.	3	Lee et al. 2015; Lin et al. 2014a, Lin et al. 2014b
1b	Mirror therapy provided in a group setting may not have a difference in efficacy when compared to mirror therapy in a one on one setting to improve motor function.	1	Thieme et al. 2012
1b	There is conflicting evidence about the effect of Movement based mirror therapy on producing greater improvements in motor function than task-based mirror therapy or conventional therapy.	1	Bai et al. 2019
1b	Mirror therapy combined with strength training may not have a difference in efficacy when compared to strength therapy to improve motor function.	1	Ehrensberger et al. 2019

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	There is conflicting evidence about the effect of mirror therapy when compared to conventional therapy or Bobath concept approaches for producing greater improvements in dexterity.	3	Oliveira et al. 2018; Kim et al. 2016; In et al. 2012	
1b	Mirror therapy combined with bilateral arm training may produce greater improvements in dexterity than bilateral arm training or conventional therapy.	1	Samuelkamaleshkumar et al. 2014	
1b	Mirror therapy combined with tDCS may not have a difference in efficacy when compared to sham mirror therapy combined with tDCS for improving dexterity.	1	Jin et al. 2019;	

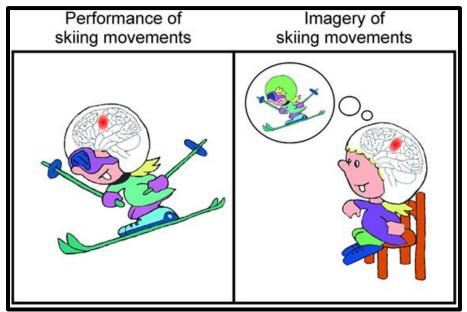
1b	Mirror therapy combined with FES may not have a difference in efficacy compared to sham mirror	1	Kim et al. 2015
	therapy with FES for improving dexterity.		
	Mirror therapy combined with cyclic NMES may		Amasyali et al. 2016
2	not have a difference in efficacy when compared to	1	
_	cyclic NMES or mirror therapy on their own for	ı	
	improving dexterity.		
	Mirror therapy combined with Mesh Gloves may		Lee et al. 2015; Lin et al. 2014a; Lin et al.
1a	produce greater improvements in dexterity than	3	2014b
	mirror therapy on its own.		
	Mirror therapy combined with high frequency		Ji et al. 2014
1b	rTMS may produce greater improvements in dexterity	1	
	than mirror therapy on its own or sham		
	stimulation.		

SPASTICITY					
LoE	Conclusion Statement	RCTs	References		
1a	Mirror therapy may not have a difference in efficacy when compared to conventional therapy or Bobath concept approaches for improving spasticity.	11	Madhoun et al. 2020; Bai et al. 2019; Ding et al. 2019; Guo et al. 2019; Pervane Vural et al. 2016; Cristina et al. 2015; Wu et al. 2013a; In et al. 2012; Michielsen et al. 2011; Yavuzer et al. 2008; Altschuler et al. 1999		
1b	Mirror therapy combined with bilateral arm training may not produce greater improvements in spasticity than bilateral arm training or conventional therapy.	1	Samuelkamaleshkumar et al. 2014		
1a	Mirror therapy combined with Mesh Gloves may produce greater improvements in dexterity than mirror therapy on its own.	2	Lee et al. 2015; Lin et al. 2014a		
1b	Mirror therapy provided in a group setting may produce greater improvements in spasticity than mirror therapy administered in a one on one setting.	1	Thieme et al. 2012		
1b	Movement based mirror therapy may not have a difference in efficacy when compared to task-based mirror therapy for improving spasticity.	1	Bai et al. 2019		
1b	Mirror therapy combined with strength training may not have a difference in efficacy when compared to strength therapy to improve spasticity.	1	Ehrensberger et al. 2019		

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
2	Mirror therapy combined with cyclic NMES may not have a difference in efficacy when compared to cyclic NMES or mirror therapy on their own for improving range of motion.	2	Amasyali et al. 2016; Yun et al. 2011	

PROPRIOCEPTION					
LoE	Conclusion Statement	RCTs	References		
1b	Mirror therapy may produce greater improvements in proprioception than conventional therapy or Bobath concept approaches.	1	Colomer et al. 2016		
1b	Mirror therapy combined with Mesh Gloves may noy have a difference in efficacy when compared to mirror therapy on its own to produce greater improvements in dexterity than	1	Lee et al. 2015		

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of mirror therapy to improve performance of activities of daily living when compared to conventional therapy or Bobath concept approaches.	19	Chinnavan et al. 2020; Madhoun et al. 2020; Antoniotti et al. 2019; Bai et al. 2019; Ding et al. 2019; Ding et al. 2018; Olivefira et al. 2018; Radajewska et al. 2017; Gurbuz et al. 2016; Kim et al. 2016; Lim et al. 2016; Pervane Vural et al. 2016; Park et al. 2015; Tyson et al. 2015; Radajewska et al. 2013; Timmerman et al. 2013; Wu et al. 2013; Michielsen et al. 2011; Yavuzer et al. 2008	
1a	Mirror therapy may not have a difference in efficacy compared to bilateral arm training for improving activities of daily living.	2	Fong et al. 2019; Li et al 2019	
1a	There is conflicting evidence about the effect of mirror therapy combined with Mesh Gloves to improve performance of activities of daily living when compared to mirror therapy on its own.	2	Lee et al. 2015; Lin et al. 2014a	
1b	Mirror therapy in a group setting may not have a difference in efficacy compared to mirror therapy in a one on one setting to improve performance of activities of daily living.	1	Thieme et al. 2012	
1b	Movement based mirror therapy may not have a difference in efficacy when compared to task-based mirror therapy or conventional therapy for improving activities of daily living.	1	Bai et al. 2019	
1b	Mirror therapy combined with strength training may not have a difference in efficacy when compared to strength therapy to activities of daily living.	1	Ehrensberger et al. 2109	


STROKE SEVERITY						
LoE	LoE Conclusion Statement RCTs References					
1b	Mirror therapy combined with bilateral arm training may produce greater improvements in stroke severity than bilateral arm training or conventional therapy.	1	Samuelkamaleshkumar et al. 2014			

1b	Mirror therapy combined with FES may not have a difference in efficacy compared to sham mirror	1	Kim et al. 2015
	therapy with FES for improving stoke severity.		

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1a	Mirror therapy may not improve muscle strength when compared to conventional therapy or Bobath concept approaches.	4	Bai et al. 2019; Ding et al. 2019; Tyson et al. 2015; Invernizzi et al. 2013; Michielsen et al. 2011	
2	Mirror therapy combined with cyclic NMES may not have a difference in efficacy when compared to cyclic NMES or mirror therapy on their own for improving range of motion.	1	Amasyali et al. 2016;	
1b	Movement based mirror therapy may not have a difference in efficacy when compared to task-based mirror therapy or conventional therapy for improving muscle strength.	1	Bai et al. 2019	
1b	Mirror therapy combined with strength training may not have a difference in efficacy when compared to strength therapy to improve muscle strength	1	Ehrensberger et al. 2109	

Mirror therapy on its own or in combination with other interventions may some aspects of upper limb function following stroke.

Mental Practice

Adopted from: https://www.ucbmsh.com/motor-imagery-for-improvement-of-gait-in-stroke-patient/

Mental practice as the name suggests, involves cognitively rehearsing a specific task by repetitively imagining oneself performing the precise movements involved in the task in the absence of performing the physical movement (Page et al. 2014). Mental practice is speculated to be effective because of its ability to use the same motor schema as when physically practicing the same task through the activation of similar neural regions and networks during mental practice (Page et al. 2014). The use of mental practice was adapted from the field of sports psychology where the technique has been shown to improve athletic performance, when used as an adjunct to standard training methods (Page et al. 2014). The technique is believed to be advantageous in stroke survivors because certain motor skills may be difficult to physically practice; stroke survivors spend a majority of their time inactive and alone; and repetitive task-specific practice is a prerequisite for cortical plasticity and subsequent motor changes (Page et al. 2014). Mental practice can be used to supplement conventional therapy and can be used at any stage of recovery.

21 RCTs evaluated mental practice compared to conventional rehabilitation or a sham intervention for upper extremity motor rehabilitation (Wang et al. 2020; Nam et al. 2019; Li et al. 2018; Oh et al. 2016; Park et al. 2015b; Mihara et al. 2013; Oostra et al. 2013; Sun et al. 2013; Nielsen et al. 2012; Letswaart et al. 2011; Page et al. 2011; Wellfringer et al. 2011; Bovend'Eerdt et al. 2010; Riccio et al. 2010; Liu et al. 2009b; Muller et al. 2007; Page et al. 2007; Page et al. 2005; Liu et al. 2004; Page et al. 2001; Page et al. 2000). Three RCTs combined mental practice with modified constraint induced movement therapy (mCIMT) compared to mCIMT on its own (Kim et al. 2018; Park et al. 2015a; Page et al. 2009). Another RCT combined mental practice with Nintendo Wii virtual reality interactive game training compared to Nintendo Wii training on its own (Park et al. 2016). Three RCTs combined mental imagery with NMES (Park et al. 2109; Park et al. 2017; Hong et al. 2012). One RCT examined mental practice of the unaffected and the affected side (Lie et al. 2014). One study looked at motor imagery combined with brain computer interface (Pichiorri et al. 2015)

The methodological details and results of all 20 RCTs evaluating mental practice interventions for upper extremity motor rehabilitation are presented in Table 13.

Table 13. RCTs Evaluating Mental Practice Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Wang et al. (2020) RCT (7) N _{start} =34 N _{end} =31 TPS=Subacute	E: Motor imagery C: Conventional therapy Duration: 3hrs/d, 5d/wk for 4wks rehab, Motor imagery 30min 5d/wk, 4wks	Fugl-Meyer Upper Extremity: (+exp) Modified Barthel Index: (-) Functional magnetic resonance imaging data: (+exp)
Nam et al. (2019) RCT (6) N _{start} = 24 N _{end} = 20 TPS= Subacute	E: Mental practice C: Conventional therapy Duration: 20min, 5x/wk for 4wks, +30min rehab	Fugl-Meyer Upper Extremity: (-) Manual Function Test: (-) Functional Independence Measure: (-)
Li et al. (2018) RCT (6) N _{start} = 20 N _{end} = 20 TPS= Subacute	E: Mental practice C: Conventional therapy Duration: 45min, 5x/wk for 4wks (+rehab same time)	Action Research Arm Test: (+exp) Fugle-Meyers Upper Extremity: (+exp)
Oh et al. (2016) RCT Crossover (7) N _{Start} =10 N _{End} =10 TPS=Chronic	E: Mental Practice C: Conventional Therapy Duration: 20min/d, 3d/wk for 3wk	Fugl-Meyer Assessment (-) Motor Activity Log (-)
Park et al. (2015b) RCT (6) N _{Start} =29 N _{End} =29 TPS=Chronic	E: Mental practice C: Physical therapy Duration: 10min/d, 5d/wk for 2wk	 Fugl-Meyer Assessment (+exp) Action Research Arm Test (+exp) Modified Barthel Index (+exp)
Mihara et al. (2013) RCT (9) N _{Start} =20 N _{End} =20 TPS=Chronic	E: Mental practice C: Sham intervention Duration: 20min/d, 3d/wk for 2wk	Fugl-Meyer Assessment (+exp) Action Research Arm test (-)
Oostra et al. (2013) RCT (8) N _{Start} =20 N _{End} =20 TPS=Chronic	E: Mental practice C: Physical training Duration: 30min/d, 5d/wk for 6wk	Action Research Arm Test (+exp)
Sun et al. (2013) RCT (6) N _{start} = 20 N _{end} = 18 TPS= Subacute	E: Motor imagery C: Conventional therapy Duration: rehab 3hr/d, 5d/wk, 4wks (+30min MI)	Fugl-Meyer Upper Extremity: (+exp)
Nilsen et al. (2012) RCT (6) Nstart= 19 Nend= 16 TPS= Chronic	E1: Mental Imagery internal E2: Mental imagery external C: Relaxation control Duration: ~20min, 2x/wk, 6wks	E1 Vs C Fugl-Meyers Assessment Upper Extremity: (+exp1) Jebsen Hand Function Test: (+exp1) Canadian Occupational Performance Measure Performance: (-) Satisfaction: (-) E1 Vs C Fugl-Meyers Assessment Upper Extremity: (+exp2) Jebsen Hand Function Test: (+exp2)

		Canadian Occupational Performance Measure Performance: (-) Satisfaction: (-) E1 Vs E2 Fugl-Meyers Assessment Upper Extremity: (-) Jebsen Hand Function Test: (-) Canadian Occupational Performance Measure Performance: (-) Satisfaction: (-)
letswaart et al. (2011) RCT (7) N _{start} =121 N _{end} =101 TPS=Subacute	E1: Motor imagery E2: Attention placebo C: Usual care Duration: 45min/d, 3d/wk for 4wk	Action Research Arm Test (-)
Page et al. (2011) RCT (6) Nstart=32 Nend=29 TPS=Subacute	E: Audiotaped mental practice C: Audiotaped sham intervention Duration: 30min/d, 3d/wk for 10wk	 Fugl-Meyer Assessment (-) Action Research Arm Test (-)
Welfringer et al. (2011) RCT (7) Nstart=30 Nend=30 TPS=Subacute	E: Visuomotor imagery therapy C: No therapy Duration: 30min, 2x/d, 4-5d/ wk, 3wks(exp) - con 45min 4x/wk	 Representation tests: Body touching: (-) Visual arm imagery: (-) Kinaesthetic imagery: (-) Body identification sensation: (-) Action Research Arm Test: (-)
Bovend'Eerdt et al. (2010) RCT (8) Nstart=50 Nend=48 TPS=Chronic	E: Mental practice C: Conventional therapy Duration: 30min/d, 2-3d/wk for 5wk	 Barthel Index (-) Nottingham Extended ADL (-) Action Research Arm Test (-)
Riccio et al. (2010) RCT Crossover (5) N _{start} =36 N _{end} =36 TPS=Chronic	E: Mental practice C: Conventional rehabilitation Duration: 1h/d, 5d/wk for 3wk	Motricity Index (+exp) Arm Function Test (+exp)
Liu et al. (2009b) RCT (5) N _{start} =35 N _{end} =35 TPS=Subacute	E: Mental Imagery C: Conventional Functional Rehabilitation Duration: 1h, 5d/wk for 3wk	Improvement in Trained Tasks (+exp)
Müller et al. (2007) RCT (4) N _{start} =17 N _{end} =17 TPS=Acute	E1: Mental practice E2: Motor practice C: Conventional therapy Duration: 30min/d, 5d/wk for 4wk	 E1/E2 vs. C Jebsen Hand Function Test: (+exp₁, +exp₂) Pinch grip: (+exp₁, +exp₂)
Page et al. (2007) RCT (6) Nstart=32 Nend=32 TPS=Chronic	E: Mental Practice C: Sham Relaxation Exercise Intervention Duration: 30min/d, 2d/wk for 6wk	Fugl-Meyer Assessment (+exp) Action Research Arm Test (+exp)
Page et al. (2005a) RCT (6) N _{start} =11 N _{end} =8 TPS=Chronic	E: Mental practice C: Relaxation techniques Duration: 30min/d, 2d/wk for 6wk	Action Research Arm Test (+exp) Motor Activity Log: Amount of Use (+exp), Quality of Movement (+exp)
Liu et al. (2004) RCT (4) N _{start} =49 N _{end} =46 TPS=Acute	E: Mental Imagery C: Functional training Duration: 1h/d, 5d/wk for 3wk	Fugl-Meyer Assessment (-)

N _{end} = 14 TPS= Chronic	Duration. Formin, Survivi for Twits	Modified Barthel Index: (-)
RCT (8) N _{start} = 14	C: Functional electric stimulation Duration: 40min, 5d/wk for 4wks	Motor Activity Log (Quality of Movement, Amount of Use):(-) Modified Ashworth Scale: (-)
TPS=NR Hong et al. (2012)	E: Mental imagery +EMG-NMES	Fugl-Meyers Upper Extremity: (-)
RCT (2) N _{Start} =40 N _{End} =32	C: Conventional Rehabilitation Program Duration: 30min/d, 5d/wk for 4wk	Motor Activity Log (+exp)
Park et al. (2017)	E: Mental Practice + EMG NMES	Fugl-Meyer Assessment (+exp) Motor Activity Log (Lovp)
Nstart=68 Nend=68 TPS=Chronic	neuromuscular electrical stimulation Duration: 30min, 5d/wk, 6wks	Korean version of Modified Barthel Index: (-)
Park et al. (2019) RCT (8)	E: Mental imagery + EMG-NMES C: Electromyogram-triggered	Action Research Arm Test: (-) Fugl-Meyer upper extremity: (-)
	Mental Imagery combined with NMES v	s Functional Electrical Stimulation
Park et al. (2016) RCT (7) Nstart=30 NEnd=30 TPS=Chronic	E: Nintendo Wii + mental practice C: Nintendo Wii Duration: 5min/d, 5d/wk for 4wk	Fugl-Meyer Assessment (-) Motor Activity Log (-)
Park at al. (2016)	Nintendo Wii combined	· · · · · · · · · · · · · · · · · · ·
	Duration: 30min/d, 5d/wk for 10wk	
Page et al. (2009) RCT (4) N _{start} =10 N _{end} =10 TPS=Chronic	E: Mental practice + Modified Constraint Induced Movement Therapy C: Modified Constraint Induced Movement Therapy	 Action Research Arm Test (+exp) Fugl-Meyer Assessment (+exp)
Park et al. (2015a) RCT (7) N _{Start} =26 N _{End} =26 TPS=Chronic	E: Mental practice + mCIMT C: mCIMT Duration: 30min/d, 5d/wk for 6wk	 Fugl-Meyer Assessment (+exp) Action Research Arm Test (+exp) Modified Barthel Index (+exp)
N _{end} = 14 TPS= Chronic	C: mCIMT therapy Duration: 6 hours plus 10 min for experimental group, 5x/wk for 2wks	Smoothness: (-) Jebsen –Taylor Hand Function Test Writing: (+exp) Page turning: (+exp) Small objects: (-) Feeding: (-) Stacking: (-) Large lightweight objects: (-) Large heavy objects: (-) Motor activity log Amount of Use: (+exp) Quality of Movement: (+exp)
RCT (6) N _{start} = 16	constraint-induced movement (mCIMT) therapy	• Speed: (-) • Time: (-)
Kim et al. (2018)	Mental practice com E: Mental practice plus modified	SD motion analysis
RCT (4) N _{start} =16 N _{end} =13 TPS=Chronic	C: Occupational therapy Duration: 30min/d, 3d/wk for 4wk	
TPS=Subacute Page et al. (2000)	E: Imagery training	Fugl-Meyer Assessment (+exp)
RCT (5) N _{start} =13 N _{end} =13	C: Occupational therapy Duration: 10min/d, 4d/wk for 6wk	Action Research Arm Test (+exp)
Page et al. (2001) RCT (5)	E: Imagery training C: Occupational therapy	Fugl-Meyer Assessment (+exp) Action Research Arm Test (+exp)

Liu et al. (2014)	E: Motor imagery + mental practice	Action Research Arm test (+exp)			
RCT (7) of affected hand					
N _{Start} =20	C: Motor imagery + mental practice				
N _{End} =20	of unaffected hand				
TPS=Subacute	Duration: 45min/d, 5d/wk for 4wk				
	Motor imagery combined with Brain computer interface				
Pichiorri et al. (2015)	E: Brain-computer interface + motor	Fugl Meyer Assessment: (+exp)			
RCT (6)	imagery	Medical Research Council Scale: (+exp)			
N _{start} =32	C: Motor imagery	National Institute of Health Stroke Scale: (+exp)			
N _{end} =28	N _{end} =28 Duration: 30min, 3x/wk, 4wks				
TPS=Subacute	PS=Subacute				

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

Conclusions about Mental Practice

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	Mental practice may produce greater improvements in motor function than conventional rehabilitation or a sham intervention.	20	Wang et al. 2020; Nam et al. 2019; Li et al. 2018; Oh et al. 2016; Park et al. 2015b; Mihara et al. 2013; Oostra et al. 2013; Sun et al. 2013; Lee et al. 2012; Nilsen et al. 2012; Page et al. 2011; Wellfringer et al. 2011; Bovend'Eerdt et al. 2010; Muller et al. 2007; Page et al. 2009; Liu et al. 2004; Page et al. 2000;	
1a	Mental practice combined with mCIMT may produce greater improvements in motor function than mCIMT on its own.	2	Park et al. 2015a; Page et al. 2009;	
1b	Mental practice combined with Nintendo Wii training may not have a difference in efficacy compared to Nintendo Wii training on its own for improving motor function.	1	Park et al. 2016	
1b	Mental practice combined with EMG-NMES training may not have a difference in efficacy compared to FES on its own for improving motor function.	1	Hong et al. 2012	
2	Mental practice combined with EMG-NMES training may improving motor function when compared to conventional therapy on its own.	1	Park et al. 2017	
1b	Mental practice combined with EMG-NMES training may not have a difference in efficacy compared to EMG-NMES on its own for improving motor function.	1	Park et al. 2019	
1b	Motor imagery combined with mental practice of the affected hand may improve motor function when compared to motor imagery combined with mental practice of unaffected hand.	1	Liu et al. 2014	

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

	Motor imagery combined with brain computer		Pichiorri et al. 2015
1b	interface may improve motor function compared to	1	
	motor imagery alone.		

DEXTERITY				
LoE	LoE Conclusion Statement RCTs References			
1b	Mental practice combined with mCIMT may not produce greater improvements in dexterity than mCIMT on its own.	1	Kim et al. 2018	

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of mental practice to improve performance of activities of daily living when compared to conventional rehabilitation or a sham intervention.	8	Wang et al. 2020; Oh et al. 2016; Park et al. 2015b; Rajeesh et al. 2015; Bovend'Eerdt et al. 2010; Liu et al. 2009b; Page et al. 2005	
1a	Mental practice combined with mCIMT may produce greater improvements in performance of activities of daily living than mCIMT on its own .	2	Park et al. 2015a Kim et al. 2018	
1b	Mental practice combined with Nintendo Wii training may not have a difference in efficacy compared to Nintendo Wii training on its own for improving performance of activities of daily living.	1	Park et al. 2016	
1b	Mental practice combined with EMG-NMES training may not have a difference in efficacy compared to EMG-NMES on its own for improving performance on activities of daily living.	1	Park et al. 2019	
1b	Mental practice combined with EMG-NMES training may not have a difference in efficacy compared to FES on its own for improving performance of activities of daily living.	1	Hong et al. 2012	

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
2	Mental practice may produce greater improvements in muscle strength than conventional rehabilitation or a sham intervention .	1	Muller et al. 2007	
1b	Motor imagery combined with brain computer interface may improve muscle strength compared to motor imagery alone.	1	Pichiorri et al. 2015	

	PROPRIOCEPTION		
LoE	Conclusion Statement	RCTs	References

1b	Mental practice may not have a difference in efficacy compared to conventional rehabilitation or no	1	Wellfringer et al. 2011
	therapy for improving proprioception.		

RANGE OF MOTION				
LoE	LoE Conclusion Statement RCTs Reference			
	Mental practice combined with mCIMT may not	1	Kim et al. 2018	
1b	produce greater improvements in range of motion than	'		
	mCIMT on its own.			


SPASTICITY					
LoE	LoE Conclusion Statement RCTs Reference				
1b	Mental practice combined with EMG-NMES training may not have a difference in efficacy when compared to FES for improving spasticity.	1	Hong et al. 2012		

STROKE SEVERITY				
LoE	LoE Conclusion Statement RCTs Reference			
1b	Motor imagery combined with brain computer interface may improve muscle strength compared to motor imagery alone.	1	Pichiorri et al. 2015	

Mental practice, alone or in combination with constraint-induced movement therapy, may be beneficial for upper limb rehabilitation following stroke.

Mental practice in combination with other therapies training may not be more beneficial for upper limb function than CIMT on its own.

Action Observation

Action observation is a form of therapy whereby an individual observes another individual performing a motor task, either on a video or a real demonstration, and then may attempt to perform the same task themselves. For example, the patient may be instructed to watch a video showing an adult stretching out his hand to pick up a cup, bringing the cup to his mouth, and then returning the cup to its initial position - the act of drinking. After observing the video sequence for a time, the participants may or may not be asked to perform the same action (Borges et al. 2018).

The therapy is considered a multisensory approach designed to increase cortical excitability in the primary motor cortex by activating central representations of actions through the mirror neuron system (Kim and Kim, 2015). Although action observation has been evaluated mainly in healthy volunteers, a few studies have evaluated its benefit in motor relearning following stroke.

Thirteen RCTs were found that evaluated action observation techniques in total. Ten RCTs compared action observation to conventional rehabilitation or sham action observation for upper extremity motor rehabilitation (Zhu et al. 2020; Fu et al. 2017; Kuk et al. 2016; Kim and Kim, 2015; Zhu et al. 2015; Sale et al. 2014; Cowles et al. 2013; Franceschini et al. 2012; Celnik et al. 2008; Ertelt et al. 2007). Two RCTs compared action observation to Task-specifc training (Kim and Bang 2016; Ahmad et al. 2014) and one RCT compared action observation with intrinsic muscle stimulation to action observation alone (Kim et al. 2020). Their methodological details and results are presented in Table 14.

Table 14. RCTs Evaluating Action Observation Interventions for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Size _{start}	frequency per week for total	l literature (university
Sample Sizeend	number of weeks	
Time post stroke category	number of weeks	
Zhu et al. (2020)	E: Action Observation	Fugl-Meyer Upper Extremity: (+exp)
RCT (7)	C: Conventional therapy	Barthel Index: (+exp)
` ,		• Barther index. (+exp)
N _{start} =46	Duration: 30min, 6x/wk for 8wks	
N _{end} =31		
TPS= Subacute		
Fu et al. (2017)	E: Video clip of 30 actions relating to	Fugl-Meyer Assessment (-)
RCT (5)	shoulder, elbow, wrist, forearm and	Wolf motor function test (-)
N _{Start} =70	hand movements.	Modified Barthel Index (-)
N _{End} =53	C: Conventional therapy	
TPS=Subacute	Duration: 20min, 6x/wk for 8 wk	
Kuk et al. (2016)	E: Video clip of a motor task followed	Box and Block Test (+exp)
RCT (5)	by execution of the same motor task	, , ,
N _{Start} =22	C: Pictures of landscapes followed by	
N _{End} =20	execution of the motor task	
· ·	Duration: 1min/d for 5d	
Kim and Kim (2015)	E: Action observation + occupational	Wolf Motor Function Test (-)
RCT (6)	therapy	
N _{Start} =12	C: Placebo observation +	
Nend=12	occupational therapy	
	Duration: 30min/d, 5d/wk for 6wk	
TPS= Not reported		First Marray Assessment (Lava)
Zhu et al. (2015)	E: Upper Limb Action Observation	Fugl-Meyer Assessment (+exp) Porthal Index (+exp)
RCT (5)	Therapy	Barthel Index (+exp)
N _{Start} =70	C: Conventional Rehabilitation	Modified Ashworth Scale (+exp)
Nend=61	Therapy	
TPS=Acute	Duration: 30min/d, 6d/wk for 8wk	
Sale et al. (2014)	E: Action observation	Box and Block Test (+exp)
RCT (7)	C: Standard rehabilitation	Fugl Meyer Assessment (+exp)
N _{Start} =67	Duration: 3min/d, 5d/wk for 4wk	
N _{End} =67		
TPS=Acute		
Cowles et al. (2013)	E: Action observation	Motricity Index (-)
RCT (7)	C: Conventional therapy	 Action Research Arm Test (+con)
N=29	Duration: 1h/d, 5d/wk for 3wk	, ,
TPS=Acute	,	
Franceschini et al. (2012)	E: Video footage	Box and Block Test (+exp)
RCT (8)	C: Static images	Frenchay Arm Test (-)
N=102	Duration: 15min/d, 5d/wk for 4wk	Modified Ashworth Scale (-)
TPS=Acute/Subacute	Buration: Torringa, our witter Twit	Functional Idependence Measure (-)
Celnik et al. 2008	E1: Congruent AO (same movements)	E1 Vs C
RCT (5) crossover	E2: Incongruent AO (different	Limb Kinematics (-)
N _{start} = 18	movements)	E2 Vs C
	C: Conventional therapy	
N _{end} = 18		• Limb Kinematics (-)
TPS= Chronic	Duration: 30min, 1x/condition, 7d	E1 Vs E2
Estalt at al. (0007)	washout period	Limb Kinematics (+exp1) From the Arm Total (xeeps)
Ertelt et al. (2007)	E: Action observation therapy	Frenchay Arm Test (+exp)
RCT (5)	C: Traditional therapy	Wolf Motor Function Test (+exp)
N=15	Duration: 12min/d, 5d/wk for 18d	Stroke Impact Scale (+exp)
TPS=Chronic		
	ion observation compared to task-orie	
Kim and Bang, 2016	E: Action observation	Fugl-Meyer Assessment (+exp)
RCT (5)	C: Task-oriented training	Box and block test (+exp)
N _{Start} =22	Duration: 40min, 5d/wk for 4wk	Modified Barthel Index (+exp)
	*	
N _{End} =22		 Modified Ashworth Scale (-)

Ahmad et al. (2014)	E1: Auditory imagery	E1 Vs C
RCT (4)	E2: Visual imagery	Action Research Arm Test: (-) Mater Activities Logge
N _{start} = 40	E3: Both imagery	Motor Activity Log: (-)
Nend= 40	C: Task specific training	Quality of Movement: (-)
TPS= Not reported	Duration: single session unspecified	Amount of Use: (-)
	length	Barthels Index: (-)
		E2 Vs C
		Action Research Arm Test: (-)
		Motor Activity Log: (-)
		Quality of Movement: (-)
		Amount of Use: (-)
		Barthels Index: (-)
		<u>E3 Vs C</u>
		Action Research Arm Test: (-)
		Motor Activity Log: (-)
		Quality of Movement: (-)
		Amount of Use: (-)
		Barthels Index: (-)
		E1 Vs E2 Vs E3
		Action Research Arm Test: (-)
		Motor Activity Log: (-)
		Quality of Movement: (-)
		Amount of Use: (-)
		Barthels Index: (-)
Actio	n Observation combined with Muscle S	Stimulation
Kim et al. (2020)	E: Action observation training with	Manual Function Test: (-)
RCT (5)	intrinsic muscle stimulation	2-point Discrimination: (-)
N _{start} = 22	C: Action observation training	Proprioception: (-)
N _{end} = 22	Duration: 70min 5x wk for 4 wks	
TPS= Chronic		
Al-handetiana and table metas. O sentral and		n_minutes: PCT_randomized controlled trial: TDS_time

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Action Observation

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of action observation interventions to improve motor function when compared to conventional rehabilitation or sham action observation.	8	Zhu et al. 2020; Fu et al. 2017; Kim and Kim, 2015; Zhu et al. 2015; Sale et al. 2014; Cowles et al. 2013; Celnik et al. 2008; Ertelt et al. 2007	
2	There is conflicting evidence about the effect of action observation interventions to improve motor function when compared to task-specific training.	2	Kim and Bang, 2016; Ahmad et al. 2014	
2	Action observation with intrinsic muscle electrical stimulation may not produce greater improvements in motor function than action observation alone.	1	Kim et al. 2020	

DEXTERITY			
LoE	Conclusion Statement	RCTs	References

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α=0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

1a	Action observation may produce greater improvements in dexterity than sham stimulation or conventional therapy.	3	Kuk et al. 2016; Sale et al. 2014; Franceschini et al. 2012
2	Action observation may produce greater improvements in dexterity than task-oriented training.	1	Kim and Bang, 2016

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1b	There is conflicting evidence about the effect of action observation interventions to improve activities of daily living when compared to sham stimulation or conventional therapy.	5	Zhu et al. 2020; Fu et al. 2017; Zhu et al. 2015; Franceschini et al. 2012; Ertelt et al. 2007	
2	Action observation may not have a difference in efficacy when compared to task-oriented training for improving performance on activities of daily living.	2	Kim and Bang, 2016; Ahmad et al. 2014	

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1b	There is conflicting evidence about the effect of action observation interventions to improve spasticity when compared to sham stimulation or conventional therapy.	2	Zhu et al. 2015; Francesschini et al. 2012	
2	Action observation may not have a difference in efficacy when compared to task-oriented training for improving spasticity.	1	Kim and Bang, 2016	

PROPRIOCEPTION					
LoE	LoE Conclusion Statement RCTs References				
2	Action Observation with intrinsic muscle stimulation may not produce greater improvements in proprioception than action observation alone.	1	Kim et al. 2020		

Key points

There is conflicting evidence for the use of action observation for improving some aspects of upper limb function following stroke.

Music Therapy

Adopted from: https://steinhardt.nyu.edu/site/ataglance/2017/03/music-therapy-helps-with-recovery-post-stroke.htm

Music therapy is defined as listening, singing, and creating music with/without rhythm and percussion instruments, and is based on four rehabilitation principles: extended repetition of simple finger and arm movements, auditory-motor coupling to reinforce motor learning due to instant auditory feedback, individualized training, and emotional/motivational support due to the emotions invoked by music and the acquisition of a new skill (Zhang et al. 2016). As such it involves many components of conventional upper limb rehabilitation interventions including repetitive task practice, finger individualization, as well as tactile and auditory feedback (van Wijck et al. 2012). The rehabilitation program can also be shaped by increasing the tempo of the songs or incorporating more difficult music pieces based on individual performance (Jun et al. 2013).

Four RCTs (Tong et al. 2015; Thielbar et al. 2014; Van Vugt et al. 2014; Altenmuller et al. 2009) examined the efficacy of musical instruction and playing compared to conventional or sham therapy.

Five RCTs (Fukioka et al. 2018; Street et al. 2018; Scholz et al. 2016; Jun et al. 2013; Chouhan et al. 2012) evaluated the effects of music therapy cueing compared to conventional therapy and graded repetitive arm supplementary programs.

The methodological details and results of all nine RCTs are presented in Table 15.

Table 15. RCTs Evaluating Music Therapy Interventions for Upper Extremity Motor Rehabilitation

Rehabilitation Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Size _{start}	frequency per week for total	Result (direction of effect)
Sample Sizeend	number of weeks	
Time post stroke category	Trainibor or wooke	
	iction and playing versus sham or con-	ventional therapy
Van Vugt et al. (2016)	E: Piano playing with normal audio	Finger Tapping and Finger Tapping
RCT (5)	feedback	Speed (-)
N _{start} = 43	C: Piano playing with jittered audio	Nine Hole Peg Test (-)
N _{end} = 34	feedback	
TPS= Subacute	Duration: 10 sessions of 30mins for 5	
T	hrs total over 4 weeks	Final Marian Assessment ()
Tong et al. (2015) RCT (5)	E: Audible Music Instrumental Training	Fugl-Meyer Assessment (-)Wolf Motor Function Test (+exp)
N _{Start} =33	C: Mute Music Instrumental Training	• Wolf Motor Function Test (+exp)
Nend=30	Duration: 30min/d, 5d/wk for 4wk	
TPS=Chronic	Duration: 30mm/a, 3a/wk for 4wk	
Thielbar et al. (2014)	E: Virtual keyboard music playing	Action Research Arm Test (-)
RCT (6)	C: High intensity, task oriented	Fugl Meyer Assessment (+exp)
N _{Start} =14	occupational therapy	Jebsen Taylor Hand Function Test
N _{End} =14	Duration: 1hr/d, 3d/wk for 6wk	(+exp)
TPS=Chronic		Grip strength (-)
		Pinch strength (-)
<u>Van Vugt et al.</u> (2014)	E: Playing piano together	Nine Hole Peg Test (-)
RCT (4)	C: Playing piano sequentially	
Nstart=36	Duration: 30min/d, 5d/wk for 2wk	
N _{End} =28		
TPS=Subacute	C. MDI piana and algebrania drum	Box and Block Test (+exp)
Altenmüller et al. (2009) RCT (5)	E: MIDI piano and electronic drum training + conventional therapy	
N _{Start} =62	C: Conventional therapy only	Nine Hole Pegboard Test (+exp) Action Research Arm Test (+exp)
Nend=62	Duration: 1hr/d, 5d/wk for 3wk	Finger/Hand tapping (+exp)
TPS=Acute	Duration: Illiva, oa/wk for owk	Tinger/Tana tapping (Texp)
	s conventional therapy or graded repet	itive arm supplementary programs
Fujioka et al. (2018)	E: Music therapy	Chedoke-McMaster Stroke Assessment
RCT (8)	C: Graded Repetitive Arm	• Hand: (-)
N _{start} = 29	Supplementary Program	• Arm: (-)
N _{end} = 27	Duration: 1hr, 3x/wk for 10wks	Action Research Arm Test: (-)
TPS= Chronic		Trail Making: (+exp)
		Stoke Impact Scale
		Mobility: (-) Marson (Thinking)
		Memory/Thinking: (-)Emotion: (-)
		Communication: (-)
		• Social: (-)
Street et al. (2018)	E: Home based music therapy	Action Research Arm Test: (-)
RCT (6)	C: Conventional therapy	Nine Hole Peg Test: (-)
N _{start} = 11	Duration: 2x/wk, 6wks, 20-30min	
N _{end} = 10		
TPS= Chronic		
Scholz et al. (2016)	E: Music Sonification Therapy	Fugl-Meyer Assessment (-)
RCT (4)	C: Sham Movement Training	Action Research Arm Test (-) Nine Held Bar Test (-)
N _{Start} =25	Duration: 30min/d, 5d/wk for 2wk	Nine Hold Peg Test (-) Strake Impact Scale (-)
N _{End} =25 TPS=Acute		Stroke Impact Scale (-)
	F: Music movement therapy	Shoulder and elbow flexion (+exp)
Jun et al. (2013) RCT (4)	E: Music movement therapy C: Routine intervention	Shoulder and elbow flexion (+exp) Arm strength (-)
N _{Start} =40	Duration: 1hr/d, 3d/wk for 8wk	Modified Barthel Index (-)
Nend=30	Daradon. Im/a, oa/wicloi owic	- Modified Bartifor fildox ()
I ILIIU—OO	l	

TPS=Acute		
Chouhan et al. (2012)	E1: Rhythmic auditory cueing	E1 Vs C
RCT (6)	E2: Visual cueing	 Fugl-Meyers Upper Extremity: (+exp1)
N _{start} = 45	C: Conventional therapy	
N _{end} = 45	Duration: 2hrs, 3x/wk for 3wks	E2 Vs C
TPS= Subacute		Fugl-Meyers Assessment Upper
		Extremity: (+exp2)
		·
		<u>E1 Vs E2</u>
		Fugl-Meyers Upper Extremity: (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

- +exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group
- +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group
- indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

Conclusions about Music Therapy

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1b	Musical training may improve motor function when compared to sham or conventional therapy.	3	Tong et al. 2015; Thielbar et al. 2014 Altenmuller et al. 2009	
1a	Music cueing therapy may not have a difference in efficacy for improving motor function when compared to conventional therapy, task-oriented therapy, visual cueing and sham interventions.	4	Fujioka et al. 2018; Street et al. 2018; Scholz et al. 2016; Chouhan et al. 2012;	

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Music cueing therapy may not have a difference in efficacy for improving performance on activities of daily living when compared to conventional therapy, task-oriented therapy, visual cueing and sham interventions.	3	Fujioka et al. 2018; Scholz et al. 2016; Jun et al. 2013

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1b	Musical training may not have a difference in efficacy for improving muscle strength when compared to sham or conventional therapy.	1	Thielbar et al. 2014
2	Music cueing therapy may not have a difference in efficacy for improving muscle strength when compared to conventional therapy, task-oriented therapy, visual cueing and sham interventions.	1	Jun et al. 2013

	DEXTERITY		
LoE	Conclusion Statement	RCTs	References

2	Musical training may not have a difference in efficacy for improving dexterity when compared to sham or conventional therapy.	2	Altenmuller et al. 2009, Van Vugt et al. 2016
1a	Music cueing therapy may not improve dexterity when compared to conventional therapy, task-oriented therapy, visual cueing and sham interventions.	2	Street et al. 2018; Scholz et al. 2016;

	RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References		
1a	Music cueing therapy may not improve range of motion when compared to conventional therapy, task-oriented therapy, visual cueing and sham interventions.	1	Jun et al. 2013		

Key points

Musical training may be beneficial for improving motor function aspects of upper limb rehabilitation post-stroke.

Musical cueing may not be beneficial for improving upper limb rehabilitation post-stroke.

Technology based interventions

Telerehabilitation

Adopted from: http://www.telereadaptation.com/en/projet/telerehabilitation-in-speech-therapy/

Telerehabilitation is the process of providing rehabilitation services remotely through information and communication technologies (e.g. a kiosk, telephone and computer) (Dodakian et al. 2017; Emmerson et al. 2017). This rehabilitation method is particularly useful for patients who cannot access a rehabilitation center (Benvenuti et al. 2014). Additionally, this intervention can be delivered for a longer duration and at a reduced cost when compared to therapies provided in the inpatient rehabilitation setting (Benvenuti et al. 2014).

Only two RCTs looked at upper limb rehabilitation using telerehabilitation (Emerson et al. 2017; Wolg et al. 2015), though several RCT protocols and observational studies have been published. In one RCT the intervention group was a home exercise program delivered through a tablet (Emerson et al. 2017), while the other RCT delivered a home exercise program through a novel hand robot system (Wolf et al. 2015). Both RCTs were compared to home exercise programs on their own,

The methodological details and results of the two RCTs evaluating telerehabilitation for the upper extremity motor rehabilitation are presented in Table 16.

Table 16. RCTs Evaluating Telerehabilitation for Upper Extremity Motor Rehabilitation

Table 10. NO 13 Evalua	ing referenabilitation of op	per Extremity Motor Kenabilitation
Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Sizestart	frequency per week for total	
Sample Sizeend	number of weeks	
Time post stroke category		
Emmerson et al. (2017)	E: Home exercise program using an	Wolf Motor Function Test (-)
RCT (7)	electronic tablet with automated	Grip Strength (-)
N _{Start} =62	reminders	
N _{End} =58	C: Paper-based home exercise	
TPS=Chronic	program	
	Duration: 45min/d, 5d/wk for 4wk	
Wolf et al. (2015)	E: Telerehabilitation through an upper	Fugl Meyer Assessment (-)
RCT (7)	extremity hand robot with home	Action Research Arm Test (-)
N _{Start} =99	exercise program	Wolf Motor Function Test (+exp)
N _{End} =92	C: Home exercise program only	
TPS=Subacute	Duration: 3h/d, 5d/wk for 8-12wk	

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Telerehabilitation

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of telerehabilitation to improve motor function when compared to conventional therapy, task-oriented therapy and sham interventions.	2	Emmerson et al. 2017; Wolf et al. 2015

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1b	Telerehabilitation may not have a difference in efficacy compared to home exercise programs for improving muscle strength.	1	Emmerson et al. 2017

Key points

The literature is mixed regarding telerehabilitation for upper limb rehabilitation following stroke.

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

Robotics

Adopted from: https://www.strokengine.ca/wp-content/uploads/2015/05/robotics_ARMin-300x226;.jpg http://www.gentle.rdg.ac.uk/103-0325_IMG.JPG; https://cpmsales.net/wp-content/uploads/CENTURA.jpg; http://img.medicalexpo.com/images_me/photo-q/74722-10591286.jpg

Robotic devices can be used to help facilitate passive range of motion, to help maintain range and flexibility, to temporarily reduce hypertonia, and to provide resistance during passive movement. Assistance can also be provided during active movements when a patient cannot complete a movement independently. Robotics may be most appropriate for patients with dense hemiplegia, although robotics can be used with higher-level patients who wish to increase strength by providing resistance during the movement. According to Lum et al. (2002) robotic devices may be the most beneficial in severely impaired patients where unassisted movement is not possible, and especially during the acute phase of recovery during which spontaneous recovery occurs. Krebs et al. (2003) noted that robotic devices rely on the repetition of specific movements to improve functional outcomes.

Upper limb robotic devices can be classified based on the type of robot, the actuation method, the form of transmission, and the sensor used (Yue et al. 2017). The type of robot is based on the alignment of the device and the use and includes end-effectors and exoskeletons (Yue et al. 2017). End-effectors are external to the patient and are connected at a single distal point, whereas exoskeletons are worn by the patient and include mechanical joints that align to the human limb joints (Sicuri et al. 2014; Yue et al. 2017). Actuation of the robot refers to the way in which the energy is produced and includes use of an electric motor, hydraulics, pneumatics, or human muscle (Yue et al. 2017). Transmission refers to the way in which the robot transfers the motion of the actuator to that of the arm, and includes linkages and cables (Yue et al. 2017). Lastly, sensors detect the force and position of the upper limb to provide feedback in response, and these include physical or bioelectrical signals such as through an electroencephalogram or an electromyogram (Yue et al. 2017).

A table of various robotic devices used in stroke rehabilitation is outlined below (Table 17).

Table 17. Robotic Devices Used for Upper Limb Rehabilitation Post-Stroke

Table 17. Robotic Dev	vices Used for Upper Limb Rehabilitation Post-Stroke
Robotic Devices	Description
Robotic Devices Arm/Shoulder End- Effectors MIT-Manus (InMotion) GENTLE/S (Haptic Master) MIME (Mirror Image Movement Enhancer) Neuro-X Arm Assist Bi-Manu-Track Arm Guide NeReBot Armeo Boom Continuous Passive Motion Devices (CYBEX and NORM, Shoulder 600)	MIT-Manus was one of the first robotic devices to be developed and is the most commonly used end-effector (Sicuri et al. 2014). It is a 2-degree-of-freedom robot manipulator that assists in goal-directed shoulder and elbow movements within the horizontal plane, while providing visual, auditory and tactile feedback (Masiero et al. 2007). A commercially available unit (InMotion²) of this device is also available. GENTLE/S or the Haptic Master is a 3-degree-of-freedom haptic interface arm with a wrist attachment mechanism, two embedded computers, a monitor and speakers and an overhead arm support system (Coote et al. 2008). The affected arm is de-weighted through a free moving elbow splint attached to the overhead frame (Coote et al. 2008). The subject is connected to the device by a wrist splint and feedback is provided during task-oriented training (Coote et al. 2008). MIME is a 6-degree-of-freedom robotic manipulator that is attached at the forearm through a splint. It provides bimanual movements as well as unilateral passive, active-assisted, and resisted movements of the hemiparetic upper extremity (Kahn et al. 2006; Burgar et al. 2011). More force is applied to the more affected forearm during goal-directed movements. Neuro-X is a 2-degree-of-freedom upper limb rehabilitation robot that assists in performing shoulder abduction-adduction and elbow flexion-extension movements in a horizontal plane. Feedback is provided through use of a monitor on which tasks are performed (Lee et al. 2016). Arm Assist is a low-cost robotic system for rehabilitation of the shoulder and elbow post-stroke. The arm is supported through a device while playing interactive games (Tomic et al. 2017). Bi-Manu-Track is a 1 degree-of-freedom device that enables bilateral and passive/active practice of forearm and wrist movement (Van Delden et al. 2012). The ARM Guide offers 3 degrees of freedom and uses a motor and chain drive to move the user's hand along a linear rail, which assists reaching in a straight-line trajectory (Kahn et
Arm/Shoulder Exoskeletons	ARMin is 7-degree-of-freedom exoskeleton robot that provides intensive and task-specific training to target improvements in motor function (Klamroth-Marganska et al. 2014).
ARMinPneu-WREXArmeo Spring	Pneu-WREX is 4-degree-of-freedom pneumatically actuated upper extremity orthosis that provides robot assisted movement rehabilitation (Reinkensmeyer et al. 2012). Armeo Spring is 5-degree-of-freedom exoskeleton robot with an adjustable suspension system (Gijbels et al. 2011). Auditory and visual feedback are provided through the virtual reality system while various functional tasks are performed (Gijbels et al. 2011).
Hand End-Effectors • Amadeo	The Amadeo assists in hand rehabilitation, having an end-effecter design. It helps with finger movements to allow for synchronization (Sale et al. 2014).
	The Mucic Clave is used with a game that promotes apacific pinching mayoments to match
Music Glove	The Music Glove is used with a game that promotes specific pinching movements to match musical notes displayed on a screen (Zondervan et al. 2016). The Gloreha hand rehabilitation glove provides repetitive and passive mobilization of the
- IVIUSIO CIOVE	fingers with multisensory feedback through a computing device (Vanoglio et al. 2017).

- Gloreha (HAnd REhabilitation GLOve)
- RAPAEL Smart Glove
- FINGER Robot
- Modified Hand Exoskeleton Robot
- Hand Mentor

The RAPAEL Smart Glove provides a 9-axis movement and position sensors along with acceleration channels, angular rate channels, magnetic field channels to assess wrist movement, and bending sensors to assess finger movement (Shin et al. 2016). The glove is worn during video games that are specifically designed to encourage specific rehabilitation exercises within the wrist and fingers (Shin et al. 2016).

The FINGER robotic exoskeleton provides assistance with flexion and extension of the finger while playing a musical computer game (Rowe et al. 2017).

The modified hand exoskeleton robot enables individual finger control through joint movement sensing (Susanto et al., 2015). The robot is used to assist with gestures such as hand grasping/opening as well as finger pinching/opening (Susanto et al. 2015).

The Hand Mentor robotic device facilitates and assists in movement of the wrist and fingers. While the arm unit stabilizes the forearm, movement in the wrist and fingers are isolated. Visual and auditory feedback are provided through a computer control box (Linder et al. 2015).

A total of 112 RCTs evaluating robotic interventions for upper extremity motor rehabilitation were found, the characteristics of these interventions are described below.

52 RCTs examined arm and shoulder end-effectors (Amatya et al. 2020; Aprile et al. 2020; Carpinella et al. 2020; Chinembiri et al. 2020; Esquenazi et al. 2020; Takebayashi et al. 2020; Dehem et al. 2019; Hung et al. 2019; Hsu et al. 2019; Kim et al. 2019; Duanoraviciene et al. 2018; Hsieh et al. 2018; Lee et al. 2018; Ellis et al. 2018; Schuster-Amft et al. 2018; Hsieh et al. 2017; Tomic et al. 2017; Fan et al. 2016; Lee et al. 2016; Takahashi et al. 2016; McCabe et al. 2015; Prange et al. 2015; Hesse et al. 2014; Lemmens et al. 2014; Masiero et al. 2014a; Timmermans et al. 2014; Sale et al. 2014; Hsieh et al. 2012; Liao et al. 2012; Abdullah et al. 2011; Burgar et al. 2011; Conroy et al. 2011; Hsieh et al. 2011; Masiero et al. 2011; Wagner et al. 2011; Lo et al. 2010; Ellis et al. 2009; Hu et al. 2009; Coote et al. 2008; Iwamuro et al. 2008; Rabadi et al. 2008; Volpe et al. 2008; Masiero et al. 2007; Kahn et al. 2006; Lum et al. 2006; Masiero et al. 2006; Fasoli et al. 2004; Volpe et al. 2004; Lum et al. 2002; Burgar et al. 2000; Volpe et al. 2000a; Volpe et al. 1999). One RCT compared arm end-effector with task specific training to the robot alone (Conroy et al. 2019). Five RCTs examined arm end-effectors under various assistive force conditions (Cho et al. 2019; Abdollahi et al. 2018; Wright et al. 2018; Rowe et al. 2017; Stein et al. 2004). Eight RCTs examined arm or shoulder exoskeletons (Horsley et al. 2019; Duanoraviciene et al. 2018; Villafane et al. 2018; Taveggia et al. 2016; Brokaw et al. 2014; Klamroth-Marganska et al. 2014; Reinkensmeyer et al. 2012; De Araujo et al. 2011). One RCT compared a single joint exoskeleton to a multijointed exoskeleton). Six RCTs examined hand end-effectors (Calabro et al. 2019; Hsieh et al. 2018; Neuendorf et al. 2017; Orihuela-Espina et al. 2016; Sale et al. 2014; Hwang et al. 2012). 15 RCTs examined hand exoskeletons (Lee et al. 2020; Page et al. 2020; Park et al. 2018; Jung et al. 2017; Thielbar et al. 2017; Vanoglio et al. 2017; Shin et al. 2016; Zondervan et al. 2016; Linder et al. 2015; Susanto et al. 2015; Wolf et al. 2015; Friedman et al. 2014; Carmeli et al. 2011; Kutner et al. 2010; Talahashi et al. 2008). Six RCTs examined robotic exoskeletons with EEG brain computer interfaces (Cheng et al. 2020; Wang et al. 2018; Ang et al. 2015; Curado et al. 2015; Ang et al. 2014; Ramos-Murguialday et al. 2013). Two RCTs compared robotics in combination with electrical stimulation (Huang et al. 2020; Hayward et al. 2013), and two RCTs examined robotics versus functional electrical sitmulation (Hesse et al. 2005; Hesse et al. 2008). Five RCTs examined robotics in combination with tDCS (Edwards et al. 2019; Mazzoleni et al. 2019; Dehem et al. 2018; Mazzoleni et al. 2017; Triccas et al. 2015). One RCT compared an arm endeffector to an arm exoskeleton (Lee et al. 2020). Three RCTs examined robotics with constraint induced movement therapy (Hung et al. 2019; Hung et al. 2019b; Hsieh et al. 2014). Six other RCTs examined robotics in combination with various other interventions (Straudi et al. 2020; Capone et al. 2017; Kim et al. 2017; Bustamante Valles et al. 2016; Liu et al. 2009; Carry et al. 2007).

The methodological details and results of all 112 RCTs are presented in Table 18.

Table 18. RCTs Evaluating Robotics for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	Arm/Shoulder End-E	ffectors
Amatya et al. (2020) RCT (6) N _{start} = 92 N _{end} =86 TPS= Acute	E: Enriched environment using robotics (NAO robot, arm end effector) C: Conventional therapy Duration: Conventional (30min once per week), Experimental (20 min of NAO robot)	Action Research Arm Test: (-) Functional Independence Measure: (-) Motor: (-) Cognition: (-)
Aprile et al. (2020) RCT (6) N _{start} = 247 N _{end} =122 TPS= Acute	E: Arm end effector C: Conventional therapy Duration: 45min 5x/wk for 6wks	Fugl-Meyer Assesment Upper Extremity: (-) Motricity index: (+exp) Modified Barthel Index: (-) Medical Research Council Shoulder: (-) Elbow: (-) Wrist: (-) Frenchay arm test: (-) Action Research Arm Test: (-) Modified Ashworth Scale: (-) Shoulder Abduction: (-) Shoulder Intra-Rotation: (-) Elbow: (-) Wrist: (-)
Carpinella et al. (2020) RCT (8) N _{start} = 40 N _{end} = 38 TPS= Subacute/Chronic	E: Robot arm end effector (braccio di ferro) C: Conventional therapy Duration: 45min, 5d/wk, 4wks	 Elbow: Flexion (-) & Extension (+exp) Trunk compensation index: (+exp) Fugl-Meyer Assessment Upper Extremity: (-) Proximal (-) Distal (-) Reaching performance scale: (-) Proximal Modified Ashworth Scale: (+exp) Distal Modified Ashworth Scale: (-) Functional Independence Measure (-)
Chinembiri et al. (2020) RCT (5) N _{start} = 50 N _{end} = 45 TPS= Not reported	E: Robot End Effector (Fourier M2) + Occupational therapy (50min) C: Occupational therapy only (50min) Duration: Not reported	Barthel's Index (+exp): Bowel: (+exp) Bladder: (+exp) Hygiene: (-) Toileting: (-) Eating: (+exp) Transfers: (+exp) Mobility: (+exp) Dressing: (+exp) Stair climb: (-) Bathing: (+exp) Fugle Meyers Upper Extremity: (+exp) Upper: (-)

		Wrist: (+exp) Flhour ()
		• Elbow: (-) • Fingers: (+exp)
		Coordination: (-)
Esquenazi et al. (2020)	E: Robot assisted therapy (Armeo)	Functional Independence Measure: (-)
RCT (6)	C: Conventional table top exercise	Fugl-Meyer Assessment Upper Extremity: (-)
N _{start} = 45	Duration: 1hr, 4x/wk until discharge	Modified Ashworth Scale
N _{end} = 40	(~3wks)	Elbow flexion: (-)
TPS= Acute		Elbow instant: () Elbow extension: (-)
		Active Range of Motion:
		Elbow flexion: (+exp)
		Elbow extension: (-)
		Passive Range of Motion
		Elbow flexion: (+exp)
		Elbow extension: (-)
Takebayashi et al. (2020)	E: Robot arm end effectors (ReoGO)	Fugl Meyer Assessment Total Upper Extremity Motor
RCT (7)	C: Conventional therapy	Score:
N _{start} =60	Duration: 40min/d 6wks	• Mild: (-)
N _{end} =56		Moderate: (-)
TPS=Subacute		Severe: (-)
		Fugl Meyer Assessment Proximal Upper Extremity
		Motor Score:
		• Mild: (-)
		Moderate: (-)
		• Severe: (-)
		Fugl Meyer Assessment Upper Extremity Flexor
		Synergy Motor Score:
		• Mild: (-)
		Moderate: (-) Severe: (-)
Doham et al. (2010)	C. DCAplan and affactor report	
Dehem et al. (2019) RCT (7)	E: REAplan end-effector robot assisted therapy	Fugl Meyers Assessment Upper Extremity: (-) Box and Block Test: (+exp)
N _{start} = 45	C: Conventional therapy	Wolf Motor Function Test-Functional Ability Scale:
N _{end} = 28	Duration: 45min, 4x/wk, 9wks (stats	(+exp)
TPS= Acute	only for 6mo follow up)	Stroke Impact Scale (social participation): (+exp)
Hung et al. (2019)	E1: Robot assisted therapy (inMotion)	E1 Vs C
RCT (7)	E2: Bimanual tracking	• Fugle-Meyers Assessment Upper Extremity: (+exp1)
N _{start} = 30	C: Conventional therapy	Proximal: (+exp1)
N _{end} = 30	Duration: 70-75min, 5d/wk, 4wks	• Distal: (-)
TPS= Chronic		Modified Ashworth Scale: (+exp1)
		Proximal: (+exp1)
		• Distal: (-)
		Medical Research Council Scale: (-)
		Motor Activity Log: (-)
		E2 Vs C
		Fugle-Meyers Assessment Upper Extremity: (-)
		Proximal: (-)
		• Distal: (-)
		Modified Ashworth Scale: (-)
		Proximal: (-)
		• Distal: (-)
		Medical Research Council Scale: (-)
		Motor Activity Log): (-)
		<u>E1 Vs E2</u>
		Fugle-Meyers Assessment Upper Extremity: (-)
		Proximal: (-)

Hsu et al. (2019) RCT (8) N _{start} = 43 N _{end} = 43	E: Robot assisted therapy (bimanual tracking) C: Conventional therapy Duration: 40min, 3x/wk for 4wks	Distal: (-) Modified Ashworth Scale: (+exp1) Proximal: (+exp1) Distal: (-) Medical Research Council Scale: (-) Motor Activity Log: (-) Motor Activity Log Quality of Movement: (-) Amount of Use: (-) Fugl-Meyers Assessment: (-)
TPS= Chronic		Shoulder/Elbow: (-)Wrist: (+exp)Hand: (+con)Coordination: (-)
Kim et al. (2019) RCT (6) N _{start} = 38 N _{end} = 36 TPS= Subacute Ch11	E: Robotic-assisted shoulder rehabilitation therapy C: Conventional therapy Duration: 30min, 10x plus 5x of additional robotic-assisted shoulder rehabilitation therapy for 4wks	Passive Range of Motion Flexion: (-) Abduction: (+exp) External rotation: (-) Internal rotation: (-)
Daunoraviciene et al. (2018) RCT (6) N _{start} = 34 N _{end} = 34 TPS= Subacute	E: Robot assisted therapy (Armeo Spring) C: Conventional therapy Duration: 30min, 5d/wk, 2wks	Fugl-Meyer Assessment Upper Extremity: (-) Shoulder Passive Range of Motion: (+exp) Elbow Passive Range of Motion: (+exp) Wrist Passive Range of Motion: (-) Modified Function Independence Measure: (-)
Hsieh et al. (2018) RCT (7) Nstart= 44 Nend= 40 TPS= Chronic	E1: Proximal robot (inMotion arm) E2: Distal robot (inMotion wrist) C: Conventional therapy Duration: 45min, 5d/wk, 4wks	E1 Vs C Fugl-Meyers Assessment (-) Medical Research Council (-) Motor Activity Log (-) Wrist Accelerometer: (-) E2 Vs C Fugl-Meyers Assessment (-) Medical Research Council (-) Motor Activity Log (-) Wrist Accelerometer: (-) E1 Vs E2 Fugl-Meyers Assessment (-) Medical Research Council (+exp2) Motor Activity Log: (+exp2) Wrist Accelerometer: (-)
Lee et al. (2018) RCT (6) Nstart= 30 Nend= 30 TPS= Chronic	E: Robot assisted therapy (REJOYCE) C: Conventional occupational therapy Duration:30min 5x/wk for 8wks	Fugle-Meyers Assessment: (+exp) Modified Barthel Index: (+exp)
Ellis et al. 2018 RCT (8) Nstart=32 NEnd=32 TPS=Chronic	E: Progressive Abduction Loading Therapy and Horizontal-Plane Viscous Resistance using Robotic Device (Haptic Master) C: Progressive Abduction Loading Therapy Duration: 30min/d, 3d/wk for 8wk	 Maximum Reaching Distance (+exp) Elbow Extension and Rotation (+exp) Shoulder Extension, Abduction (+exp) Fugl-Meyer Assessment (-) Motor Activity Log (-) Quality of Movement (-) Rancho Los Amigos Functional Test for the Hemiparetic Upper Extremity (-)
Schuster-Amft et al. (2018) RCT (8) N _{start} = 54 N _{end} = 52	E: VR robot - Bi-Manu trainer C: Conventional therapy Duration: 45min, 4x/wk, 4wks	Box and Block Test: (-) Cheodke Mcmaster Arm Hand Inventory: (-) Stroke Impact Scale Strength: (-)

TPS= Chronic		Activites of Daily Living: (-) Mobility: (-) Hand Function: (-)
Hsieh et al. (2017) RCT (6) Nstart =31 NEnd =21 TPS=Subacute	E: Bilateral priming robot-aided (Bi-Manu-Track) therapy with task-oriented therapy C: Task-oriented therapy Duration: 90min/d, 5d/wk for 4wk	 Stroke Recovery: (-) Stroke Impact Scale (-) Fugl-Meyer Assessment (-) Box and Block Test (-) Grip Strength (-) Modified Rankin Scale (-) Functional Independence Measure (-)
Tomic et al. (2017) RCT (7) N _{Start} =26 N _{End} =26 TPS=Subacute	E: ArmAssist Robot C: Conventional Therapy Duration: 30min/d, 5d/wk for 3wk	Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) Barthel Index (-)
Fan et al. (2016) RCT (4) Nstart=6 Nend=6 TPS=Chronic	E: Robot-assisted bilateral arm therapy (Bi-Manu-Track) C: Dose-matched control therapy Duration: 45min/d, 5d/wk for 4wk	Fugl-Meyer Assessment (-) Wolf Motor Function Test (-)
Lee et al. (2016) RCT (4) N _{Start} =58 N _{End} =44 TPS=Acute	E: Robotic-assisted therapy (Neuro-X) C: Conventional rehabilitation Duration: 1hr/d, 5d/wk for 2wk	 Manual Muscle Test (-) Manual Function Test (-) Modified Barthel Index (-)
Takahashi et al. (2016) RCT (5) Nstart=60 Nend=56 TPS=Subacute	E: Robot arm end effectors (ReoGO) C: Conventional therapy Duration: 40min/d 6wks	Fugl Meyer Assessment Upper Extremity (-) Wolf Motor Function Test Total: (-) Motor Activity Log-Amount of use: (-) Motor Activity Log-Quality of use: (-)
McCabe et al. (2015) RCT (6) Nstart=39 NEnd=35 TPS=Chronic	E1: Robotic training (InMotion ARM) + motor learning E2: Motor learning + functional electrical stimulation C: Motor learning Duration: 5hr/d, 5d/wk for 12wk	Arm Motor Ability Test (-) Fugl-Meyer Assessment (-)
Prange et al. (2015) RCT (7) NStart=70 NEnd=68 TPS=Acute	E: Arm training with robot (ArmeoBoom) C: Conventional training Duration: 30min/d, 4d/wk for 6wk	Stroke Upper Limb Capacity Scale (-) Reaching Distance (-) Fugl-Meyer Assessment (-)
Hesse et al. (2014) RCT (8) NStart=50 NEnd=46 TPS=Acute	E: Group robot therapy (Bi-Manu- Track) + individual arm therapy C: Individual arm therapy Duration: 30min/d, 5d/wk for 6wk	Box and Block Test (-) Action Research Arm Test (-)
Lemmens et al. (2014) RCT (7) NStart=16 NEnd=16 TPS=Chronic	E: Robotic therapy (Haptic Master) C: No robotic therapy Duration: 30min (2x/d), 4d/wk for 8wk	 Fugl-Meyer Assessment (-) Action Research Arm Test (-) Motor Activity Log (-)
Masiero et al. (2014a) RCT (7) N _{Start} =34 N _{End} =30 TPS=Chronic	E: Robotic therapy (NeReBot) C: Standard therapy Duration: 2hr/d, 5d/wk for 5wk	 Fugl-Meyer Assessment (-) Box and Block test (-) Frenchay Arm Test (-) Medical Research Council Scale (-) Functional Independence Measure (-)
Timmermans et al. (2014) RCT (8) N _{Start} =22	E: Robotic arm training (Haptic Master) C: Task oriented arm training	Fugl-Meyer Assessment (-)Action Research Arm test (-)Motor Activity Log (-)

N _{End} =22	Duration: 30min (2x/d), 4d/wk for 8wk	
TPS=Chronic <u>Sale et al.</u> (2014) RCT (6) N _{Start} =53 N _{End} =53 TPS=Acute	E: Robot aided therapy (MIT-Manus) + reaching tasks C: Reaching tasks Duration: 1hr/d, 2d/wk for 10wk	Fugl-Meyer Assessment (+exp) Motricity Index (+exp)
Hsieh et al. (2012) RCT (7) Nstart=54 Nend=53 TPS=Chronic	E1: High intensity robotic therapy (Bi-Manu-Track) E2: Low intensity robotic therapy C: Conventional therapy Duration: 90min/d, 5d/wk for 3wk	E1 vs E2 Fugl-Meyer Assessment: (+exp) E1 vs C Fugl-Meyer Assessment: (+exp) E1 vs E2 & E1 vs C Medical Research Council Scale (-) Motor Activity Log (-) Stroke Impact Scale (-)
<u>Liao et al.</u> (2012) RCT (7) N _{start} =20 N _{end} =20 TPS=Chronic	E: Robotic therapy (Bi-Manu-Track) C: Dose-matched conventional therapy Duration: 100min/d, 5d/wk for 4wk	Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) ABILHAND (+exp)
Abdullah et al. (2011) RCT (5) Nstart=20 Nend=20 TPS=Acute	E: Robot assisted therapy C: Dose-matched conventional therapy Duration: Not Specified	Chedoke Arm and Hand Activity Inventory (-)
Burgar et al. (2011) RCT (5) N=54 TPS=Acute	E1: High intensity robotic therapy (MIME) E2: Low intensity robotic therapy C: Conventional therapy Duration: 1hr/d, 3d/wk for 8wk	E1 vs C Functional Independence Measure (+exp) Modified Ashworth Scale (-) Fugl-Meyer Assessment (-)
Conroy et al. (2011) RCT (6) N _{start} =62 N _{end} =54 TPS=Chronic	E1: Robot-assisted (InMotion ARM) planar reaching E2: Robot-assisted planar and vertical reaching C: Intensive conventional arm therapy Duration: 1hr/d, 3d/wk for 6wk	Fugl-Meyer Assessment (-)
Hsieh et al. (2011) RCT (8) N _{start} =18 N _{end} =18 TPS=Chronic	E1: High intensity robot-assisted therapy (Bi-Manu-Track) E2: Low intensity robot-assisted therapy C: Conventional therapy Duration: 45min/d, 3d/wk for 6wk	E1 vs E2 Fugl-Meyer Assessment: (+exp) E2 vs. C Fugl-Meyer Assessment (-) E1 vs C Motor Activity Log (+exp) E1 vs E2/C Motor Activity Log (-) ABILHAND (-) Medical Research Council Scale (-)
Masiero et al. (2011) RCT (5) N _{start} =21 N _{end} =21 TPS=Acute	E: Robotic arm therapy (NeReBot) C: Conventional therapy Duration: Not Specified	 Medical Research Council Scale (+exp) Fugl-Meyer Assessment (-) Functional Independence Measure (-) Modified Ashworth Scale (-) Frenchay Arm Test (-) Box and Block Test (-)
Wagner et al. (2011) RCT (5) N _{start} =127 N _{end} =127 TPS=Chronic	E: Intensive robot assisted therapy C1: Intensive comparison therapy C2: Conventional therapy Duration: 1hr, 3x/wk, 12wks	Stroke Impact Scale: (+exp)
Lo et al. (2010) RCT (7) N _{start} =127	E1: Intensive robot assisted therapy (MIT-Manus) E2: Intensive comparison therapy	E1 vs C Fugl-Meyer Assessment (-) Wolf Motor Function Test (-)

N _{end} =127 TPS=Chronic	C: Usual care Duration: 1hr/d, 3d/wk for 12wk	Stroke Impact Scale (+exp) Modified Ashworth Scale (-)
	January Hilly Gallin (1977)	E1 vs E2 Fugl-Meyer Assessment (-) Wolf Motor Function Test (-) Stroke Impact Scale (-) Modified Ashworth Scale (-)
Ellis et al. (2009) RCT (4) N _{start} = 14 N _{end} = Not reported TPS= Not reported	E: Haptic master robot (progressive abduction shoulder loading) C: Robot sham Duration: 3x/wk, 8wks	Work Area: (+exp)Shoulder Strength: (-)Elbow Strength: (-)
Hu et al. (2009) RCT (5) N _{start} =27 N _{end} =27 TPS=Chronic	E: EMG-driven robot (CYBEX and NORM Continuous Passive Motion) C: Passive motion device Duration: 20min/d, 5d/wk for 7wk	 Fugl-Meyer Assessment (+exp) Modified Ashworth Scale (+exp)
Coote et al. (2008) RCT (6) N _{start} =23 N _{end} =20 TPS=Chronic	E: Robot-mediated therapy (GENTLE/s) C: Sling suspension phase Duration: 30min/d, 3d/wk for 9wk	Fugl-Meyer Assessment (+exp)
Iwamuro et al. (2008) RCT Cross over (6) N _{start} = 10 N _{end} = 10 TPS= NR	E: Robot arm end effector C: No robot Duration: 1 session	Speed: (+con)Accuracy: (+exp)
Rabadi et al. (2008) RCT (5) N _{start} =30 N _{end} =30 TPS=Acute	E1: Robot (MIT-Manus)-unilateral group E2: Ergometer (bilateral) group C: Conventional therapy Duration: 3hr/d, 3d/wk for 4wk	E1 vs E2/C • Fugl-Meyer Assessment (-)
Volpe et al. (2008) RCT (5) N _{start} =21 N _{end} =21 TPS=Chronic	E: Sensorimotor arm training delivered by robotic device (MIT-Manus) C: Sensorimotor arm training delivered by a therapist Duration: 1hr/d, 3d/wk for 6wk	Fugl-Meyer Assessment (-) Motor Power Scale (-)
Masiero et al. (2007) RCT (5) N _{start} =20 N _{end} =20 TPS=Acute	E: Robotic Training (NeReBot) C: Exposure to robotic device Duration: 1hr/d, 4d/wk for 5wk	 Fugl-Meyer Assessment (+exp) Medical Research Council (+exp) Functional Independence Measure (+exp) Modified Ashworth Scale (-)
Kahn et al. (2006) RCT (4) N _{start} =19 N _{end} =19 TPS=Chronic	E: Active-assistive reaching exercise using a robotic device (Arm Guide) C: Task-matched amount of reaching without assistance Duration: 40min/d, 6d/wk for 4wk	Rango Los Amigos Functional Test (-)
Lum et al. (2006) RCT (4) N _{start} =30 N _{end} =23 TPS=Subacute	E1: Robot-unilateral (MIME) E2: Robot-bilateral E3: Robot-combined C: Conventional therapy Duration: 30min/d, 3d/wk for 4wk	E3 vs C Fugl-Meyer Assessment (+exp ₃) Motor Status Score (+exp ₃) Functional Independence Measure (-) Motor power examination (-) Modified Ashworth Scale (-) E3 vs E1 Fugl-Meyer Assessment (-) Motor Status Score (-) Functional Independence Measure (-) Motor power examination (-) Modified Ashworth Scale (-)

Masiero et al. (2006)	E: Additional sensorimotor robotic	Fugl-Meyer Assessment (+exp)
RCT (5)	training (NeReBot)	Motricity Index (+exp)
N _{start} =35	C: Exposure to robotic device with no	Functional Independence Measure (+exp)
N _{end} =35	training	Medical Research Council Scale (-)
TPS=Acute	Duration: 1hr/d, 4d/wk for 8wk	()
Fasoli et al. (2004)	E: Robot assisted (MIT-Manus)	Fugl-Meyer Assessment (+exp)
RCT (6)		Motor status score (-)
	movement training	
N _{start} =56	C: Robot exposure	Medical Research Council score (-)
Nend=56	Duration: 90min/d, 2d/wk for 12wk	
TPS=Acute		
Volpe et al. (2004)	E: Continuous Passive Motion Device	Fugl-Meyer Assessment (-)
RCT (4)	(Shoulder 600)	Motor Status score (-)
N _{start} =32	C: Control	Modified Ashworth Scale (-)
N _{end} =32	Duration: 30min/d, 3d/wk for 4wk	initialities / isinitialities ()
TPS=Acute	Burdion : committe, car without twit	
	F. Dahat (MIMF) assisted assurance	First Marray Assessment (v. s.m.)
Lum et al. (2002)	E: Robot (MIME)-assisted movement	Fugl-Meyer Assessment (+exp)
RCT (6)	training	Strength upper extremity (+exp)
N _{start} =30	C: Conventional therapy	Reach upper extremity (+exp)
N _{end} =27	Duration: 1hr/d, 5d/wk for 6wk	Functional Independence Measure (-)
TPS=Chronic		
Burgar et al. (2000)	E: Robotic (MIME) device therapy	Fugl-Meyer Assessment (-)
RCT (5)	C: Conventional care (physical	Functional Independence Measure (-)
N _{start} =21	therapy)	Barthel Index (-)
N _{end} =21	Duration: 2hr/d, 3d/wk for 10wk	
TPS=Chronic		
Volpe et al. (2000a)	E: Robotic training (MIT-Manus)	Motor Power score: shoulder and elbow (+exp), wrist
RCT (6)	C: Exposure to the robotic device	and hand (-)
N _{start} =56	without training	Motor Status score: shoulder and elbow (+exp), wrist
N _{end} =56	Duration: 30min/d, 3d/wk for 4wk	and hand (-)
	Duration. Sommo, Su/wk for 4wk	
TPS=Acute		Functional Independence Measurer (+exp)
		Fugl-Meyer Assessment: (-)
Volpe et al. (1999)	E: Robot (MIT-Manus)	Motor Status score (+exp)
RCT (6)	C: Sham treatment	Motor Status score (-)
N _{start} =20	Duration: 45min/d, 5d/wk for 6wk	Motor Power score (+exp)
N _{end} =12	,	Fugl-Meyer Assessment (-)
TPS=Acute		agi mayor / toobasimoni ()
Tre-riodio	Arm End Effectors Combined with	Tack Specific Training
0 1 1 (0010)		
Conroy et al. (2019)	E: Robot + task training (Inmotion)	Fugl Meyers Assessment Upper Extremity: (-)
RCT (6)	C: Robot only	Shoulder/Elbow: (-)
N _{start} = 45	Duration:1hr, 3x/wk, 12wks	Wrist/Hand: (-)
N _{end} = 41		Log Wolf Motor Function Test: (+exp)
TPS= Chronic		Stroke Impact Scale hand item: (+exp)
Multi-Site		Stroke impact ocale fland item. (Texp)
	(0) 11 = 1=1	
<i>F</i>	Arm/Shoulder End Effectors combined	
Cho et al. (2019)	E: Robot therapy with assistance as	Fugle Meyers Assessment Upper Extremity: (+exp)
RCT (8)	needed	Box and Block Test: (-)
N _{start} = 42	C: Robot therapy with guidance forces	Action Research Arm Test: (+exp)
Nend= 38	all times (EE)	Movement Velocity: (-)
TPS= Chronic	Duration: 40min, 3x/wk for 6wks	• Movement velocity. (-)
		- Wolf Motor Function Tosts ()
Abdollahi et al. (2018)	E: Arm end effector + error	Wolf Motor Function Test: (-) Motor Activity Lear (-)
RCT (6)	augmentation	Motor Activity Log (-)
N _{start} = 28	C: Arm end effector	Box and Block Test: (-)
N _{end} =26	Duration: 45min, 3x/wk for 2wks	Fugl-Meyer Assessment Upper Extremity: (-)
TPS= Chronic		
Wright et al. (2018)	E: Robot training with force field	Fugl Meyer Upper Extremity: (-)
RCT (8)	C: Robot training without force field	Action Research Arm Test:
N _{start} =23	Duration: ~45min, 5 sessions over 5	• Time: (-)
	- Daradon, ~Juliu, J 363310113 UVCI J	. ▼(C. (*)
N _{end} =22	wks	• Score: (-)

Rowe et al. (2017) RCT (7) Nstart = 30 NEnd = 30 TPS=Chronic Stein et al. (2004) RCT (6) Nstart = 18 Nend = 18 TPS= Chronic	E: High Robotic Assistance Finger Training (FINGER robot) C: Low Robotic Assistance Finger Training Duration: 90min/d, 5d/wk for 8wk E: Resistance robot training end eff C: Active asissted robot training Duration: 1hr, 3x/wk, 6wks	Chedoke McMaster Stroke Assessment-Arm: (-) Elbow Range of Motion: Flexion: (-) Extension: (-) Modified Ashworth Scale: Biceps: (-) Triceps: (+exp) Fugl-Meyer Assessment (+exp) Box and Block Test (-) Action Research Arm Test (-) Nine-Hole Peg Test (-) Finger Tapping (-) Motor Activity Log (-) National Institutes of Health Stroke Scale (-) Modified Ashworth Scale: (-) Fugl Meyers Upper Extremity: (-) Motor Status Score Shoulder/Elbow: (-) Wrist/Hand (-) Manual Muscle Testing (-) Peak Force (N) (-)
		. , , ,
	Arm/Shoulder Exosk	eletons
Horsley et al. (2019) RCT (8) Nstart= 50 Nend= 45 TPS= Acute Chap11	E: Repetitive task practice with SMART arm device C: Conventional therapy Duration: 60min, 5d/wk, 5wks + same amount of time for smart arm (not equal)	Passive Range of Motion Wrist Extension: (-) Elbow Extension: (+con) Shoulder Flexion: (-) Shoulder External rotation: (-) Motor Assessment Scale: (-)
Daunoraviciene et al. (2018) Lithuania RCT (5) N _{Start} =34 N _{End} =34 TPS= Subacute	E: Robot-assisted Training (Armeo Spring) C: Conventional Therapy Duration: 1hr/d, 4d/wk for 5wk	 Functional Independence Measure (-) Fugl-Meyer Assessment (-) Shoulder Flexion, Abduction, Adduction, and Internal Rotation (+exp) Elbow Flexion, Supination, and Pronation (+exp) Wrist Range of Motion (-)
Villafane et al. (2018) RCT (7) Nstart=32 Nend=32 TPS=NR	E: Robot passive mobilization (exo) C: Conventional therapy Duration: 30min 5x/wk, 3wks	National Institutes of Health Stroke Scale: (-) Modified Ashworth Scale: (-) Barthel Index: (-) Motricity Index: (-) Quick DASH: (-)
Taveggia et al. (2016) RCT (7) N _{start} =54 N _{end} =54 TPS=Mixed	E: Robot arm exoskeletons C: Conventional rehabilitation Duration: dose matched, 30min, 5d/wk for 6wks (+30min PT)	Functional Independence Measure: (-) Motricity Index: (-) Modified Ashworth Scale: (-)
Brokaw et al. (2014) RCT (3) N _{Start} =12 N _{End} =10 TPS=Chronic	E: Robotic therapy (ARMin) C: Conventional therapy Duration: 90min/d, 3d/wk for 4wk	Fugl-Meyer Assessment (-) Action Research Arm Test (+exp) Box and Bock Test (-)
Klamroth-Marganska et al. (2014) RCT (8) Nstart=77 NEnd=73 TPS= Chronic	E: Robotic therapy (ARMin) C: Conventional treatment Duration: 1hr/d, 3d/wk for 8wk	 Fugl-Meyer Assessment (+exp) Strength (+exp) Motor Activity Log (-) Modified Ashworth Scale (-) Wolf Motor Function test (-)
Reinkensmeyer et al. (2012) RCT (7)	E: Robotic training (Pneu-WREX) C: Conventional tabletop therapy	Fugl-Meyer Assessment (-)Nottingham sensory test (-)

N _{start} =26	Duration: 1hr/d, 3d/wk for 8wk	Grip strength (-)
N _{end} =26		Box and Block Test (-)
TPS=Chronic		
de Araújo et al. (2011)	E: Electromechanical orthosis (Exo-	Fugl Meyers Assessment Upper Extremity: (-)
RCT (5)	Robot)	Shoulder/Elbow: (-)
N _{start} = 12	C: Conventional Therapy	Wrist/Hand: (-)
N _{end} = 12	Duration: 3x/wk, 8wks, 50min	Velocity/Coordination: (-)
TPS= Chronic		Modified Ashworth Scale:
		• Elbow: (-)
		Wrist/Hand: (-)
	Single Vs Multijoint Arm	Exoskeleton
Milot et al. (2013)	E: Single joint arm exoskeleton	Box and Block Test: (-)
RCT (7)	C: Multijointed arm exoskeleton	Fugl-Meyers Assessment Upper Extremity: (-)
N _{start} = 20	Duration: 60min, 3x/wk for 4wks	Wolf Motor Function Test: (-)
N _{end} = 20		• Time: (-)
TPS= Chronic		• Score: (-)
		Motor Activity Log:
		Amount of Use (-)
		• Quality of Life: (-)
		Grip Strength: (-)
		Pinch Strength: (+exp)
	Hand End-Effect	
Calabrò et al. (2019)	E: Hand end effector (Amadeo)	Nine Hole Peg Test: (+exp)
RCT (7)	C: Conventional therapy	Fugl-Meyers Assessment Upper Extremity: (+exp)
N _{start} = 50		Tugi-Meyers Assessment Opper Extremity. (+exp)
N _{end} = 50	Duration: Robot (45min/5x/8wk); conv	
TPS= Chronic	(2h/5x/8wk)	
Hsieh et al. (2018)	E1: Proximal robot (inMotion arm)	E1 Vs C
RCT (7)	E2: Distal robot (inMotion wrist)	• Fugl-Meyers Assessment (-)
N _{start} = 44	C: Conventional therapy	Proximal (-)
N _{end} = 40	Duration: 45min, 5d/wk, 4wks	• Distal (-)
TPS= Chronic	Buration: 40mm, 60/WK, 4WK6	Medical Research Council (-)
11 6 611161116		Motor Activity Log (-)
		Wrist Accelerometer: (-)
		E2 Vs C
		• Fugl-Meyers Assessment (-)
		Proximal (-)
		Distal (+exp)
		Medical Research Council (-) Motor Activity Log (-)
		Wrist Accelerometer: (-) E1 Vs E2
		• Fugl-Meyers Assessment (-)
		Proximal (-) Pintal (-)
		Distal (-) Madical Passarah Council (Love2)
		Medical Research Council (+exp2) Meter Activity Legy (Leve2)
		Motor Activity Log: (+exp2) Wright Acceleraments: ()
November of all (0047)	Et Dobatio hall	Wrist Accelerometer: (-) Crip Strongth (Love)
Neuendorf et al. (2017)	E: Robotic ball	Grip Strength: (+exp) Bound Block Test: (+exp)
RCT (4)	C: Conventional therapy	Round Block Test: (+exp) Ovials Block History of Arms Shoulder Hand (Ovials)
N _{start} = 25	Duration: 45min, 2x/wk 12wks each	Quick Disabilities of Arm Shoulder Hand (Quick DASLI): ()
Nend= 20	condition	DASH): (-)
TPS= Chronic	E D L	Find Manage Assessment II . Ed. 19 ()
Orihuela-Espina et al. (2016)	E: Robot assisted therapy (Amadeo	Fugl-Meyers Assessment Upper Extremity: (+exp) Matricity Index. ()
RCT Cross overs (6)	Robot)	Motricity Index: (-)
N _{start} = 17	C: Conventional therapy	
Nend= 17	Duration: 40x ,1hr, 5x/wk for 8-10wks	
TPS= Subacute		

Sale et al. (2014)	E: Amadeo robotic therapy +	Box and Block Test (+exp)
RCT (7)	physiotherapy	Fugl-Meyer Assessment (+exp)
N _{Start} =20	C: Occupational therapy	
N _{End} =20	Duration: 1hr/d, 3d/wk for 4wk	
TPS=Acute		
Hwang et al. (2012)	E: Active Amadeo robot training	Jebsen-Taylor Hand Function (-)
RCT (6)	C: Early passive therapy	Fugl-Meyer Assessment (-)
N _{start} =17	Duration: 45min/d, 5d/wk for 2wk	Ashworth Scale (-)
N _{end} =17	Daration: 45min/a, 5a/wk for 2wk	Nine Hole Peg Test (-)
TPS=Chronic		Stroke Impact Scale (-)
TP3=CHIOHIC	W. 15 . 1.1.6	
	Hand Exoskelete	-
Lee et al. (2020)	E: VR glove (RAPAEL)	Box and Block Test: (+exp)
RCT (8)	C: Conventional therapy	Grip Strength: (+exp)
N _{start} = 36	Duration: 30min, 3x/wk, 8wks	Jebsen-Taylor Hand Function Test: (-)
N _{end} = 36		Wolf Motor Function Test: (+exp)
TPS= Chronic		
Multi-site		
Page et al. (2020)	E1: Myomo electromyography (EMG)	Fugl-Meyers Assessment Upper Extremity: (-)
RCT (7)	powered orthosis with repetitive task	Action Research Arm Test: (-)
$N_{\text{start}} = 35$	practice (RTP)	
Nend= 31	E2: Myomo EMG powered orthosis	
TPS= Chronic	C: RTP	
11 3= Chionic	Duration: 1hr, 3x/wk, 8wk	
D ((0040)		
Park et al. (2018)	E: Robot Rapael smart board VR	Fugl Meyer Assessment Upper Extremity (-)
RCT (7)	C: Conventional therapy	• Proximal: (-)
N _{start} =26	Duration: 30min, 5d/wk, 4wks	• Distal: (-)
N _{end} =25		Coordination: (-)
TPS=Chronic		Wolf Motor Function Test (-)
		Active Range of Motion-shoulder: (-)
		Modified Barthel Index: (-)
		SIS total: (+exp)
		Strength: (-)
		Hand function: (-)
		Mobility: (-)
		Activities of daily living: (+exp)
		Memory and thinking: (-)
		Communication: (-)
		• Emotion: (-)
		Social participation: (-) Page vary (-) Page
1 (1/22/5)	F VD 1 (2.2.2.)	• Recovery: (-)
Jung et al. (2017)	E: VR glove (RAPAEL)	Wolf Motor Function Test: (+exp)
RCT (6)	C: Conventional therapy	Active Range of Motion: (-)
N _{start} = 14	Duration: 30min, 5x/wk, 3wks	
N _{end} = 13		
TPS= Chronic		
Thielbar et al. (2017)	E: EMG-driven actuated glove +	Hand Aperture (+exp)
RCT (6)	conventional occupational therapy	Action Research Arm Test (-)
N _{Start} =23	C: Occupational therapy	Wolf Motor Function Test (-)
	Duration: 1 hr/d, 3d/wk for 6wk	` '
N _{End} =22	Daradon. 1 m/a, ou/wit for owit	• Fugl-Meyer Assessment (-)
TPS=Chronic		Chedoke McMaster Stroke Assessment (-)
		Grip/Pinch Strength (-)
Vanoglio et al. (2017)	E: Robotic Glove with Multisensory	Motricity Index (+exp)
RCT (7)	Feedback (Gloreha hand rehab glove)	
N _{Start} =30	C: Conventional Therapy	Grip Strength (+exp)
N _{End} =27	Duration: 30min/d, 3d/wk for 5wk	Pinch Test (+exp)
TPS=Acute	Saladon Somma, Garantion Own	Quick Version of Disabilities of the Arm, Shoulder,
11 O-Moule		and Hand Questionnaire (+exp)
Ohin at al. (0040)	F. DADAEL ConcertOlescon sintered. 19	· · · · · · · · · · · · · · · · · · ·
Shin et al. (2016)	E: RAPAEL SmartGlove virtual reality	Fugl-Meyer Assessment (+exp) Ishaan Toylor Hand Function Toot (+exp)
RCT (8)	task training	Jebsen Taylor Hand Function Test (+exp) Strate Impact Scale (+exp)
N _{Start} =46	C: Conventional therapy	Stroke Impact Scale (+exp)

N _{End} =46 TPS=Chronic	Duration: 40min/d, 5d/wk for 4wk	Purdue Pegboard Test (-)
Zondervan et al. (2016)	E: Home-based training with a	Motor Activity Log (+exp)
RCT (6)	MusicGlove	Box and Block Test (-)
N _{Start} =18	C: Conventional tabletop exercise	9-Hole Peg Test (-)
N _{End} =17	Duration: 25min/d, 6d/wk for 4wk	Action Research Arm Test (-)
TPS=Chronic	,	``
Linder et al. (2015)	E: Robot-assisted therapy program +	Stroke Impact Scale (+exp)
RCT (5)	home exercise program (Hand	. , , , ,
N _{Start} =99	Mentor)	
N _{End} =99	C: Home exercise program	
TPS=Acute	Duration: 30min/d, 2d/wk for 5wk	
Susanto et al. (2015)	E: Robotic paretic hand therapy	Wolf Motor Function Test (+exp)
RCT (7)	(exoskeleton device)	Wolf Motor Fundami Foot (Foxp)
N _{Start} =19	C: Task therapy without robotic aid	
Nend=19	Duration: 1hr/d, 5d/wk for 4wk	
TPS=Chronic	Duration. Till/d, 3d/wk for 4wk	
	C. Talamanitared rebetic assisted	Wolf Motor Function Toot (Love)
Wolf et al. (2015)	E: Telemonitored robotic assisted	Wolf Motor Function Test (+exp) Fuel Motor Accessment ()
RCT (6)	home exercise therapy program	Fugl-Meyer Assessment (-) Action Research Arm Test (-)
N _{Start} =99	(Hand Mentor)	Action Research Arm Test (-)
N _{End} =92	C: Dose-matched usual care home	
TPS=Acute	program Duration 2br/d Ed/wk for Swk	
Triedman et al. (004.4)	Duration; 3hr/d, 5d/wk for 8wk E1: IsoTrainer	Molf Motor Function Toot ()
Friedman et al. (2014)		Wolf Motor Function Test (-)
RCT (6)	E2: Music glove training	Fugl-Meyer Assessment (-)
N _{Start} =12	C: Control	Action Research Arm Test (-)
N _{End} =12	Duration: 1hr/d, 3d/wk for 2wk	E2 vs C
TPS=Chronic		Box and Block Test: (+exp ₂)
		Nine Hole Peg Test:(+exp ₂)
		E1 vs E2
		Box and Block Test: (-)
		Nine Hole Peg Test:(-)
		E1 vs C
		Box and Block Test: (-)
		Nine Hole Peg Test:(-)
Carmeli et al. (2011)	E: Hand exoskeleton robot (hand	Fugl Meyers Assessment Upper Extremity: (+exp)
RCT (6)	tutor)	Box and block test: (+exp)
N _{start} = 34	C: Convential therapy	Movement speed: (+exp)
N _{end} = 31	Duration: 20-30min, 5x/wk, 3wks	Trajectory accuracy: (+exp)
TPS= Acute		, , , , , , , , , , , , , , , , , , , ,
Kutner et al. (2010)	E: Robot therapy (Hand Mentor)	Stroke Impact Scale (+exp)
RCT (7)	C: Conventional therapy	,
N _{start} =30	Duration: 1hr/d, 5d/wk for 6wk	
Nend=26		
TPS=Subacute/Chronic		
Takahashi et al. (2008)	E: Robot hand exoskeletons (active)	Action Research Arm Test: (+exp)
RCT (5)	C: Sham	Block and Block Test: (-)
N _{start} =13	Duration: 7.5d, 3x/wk, 1.5hrs	Fugl Meyer Assessment Upper Extremity: (+exp)
	Duration. 7.5u, 5x/wk, 1.5ms	Modified Ashworth Scale:
N _{end} =12		
Tr S=GIIIGIIIG		• Wrist: (+exp)
		Elbow: (-) Active Pange of Metion, Wrist: ()
		Active Range of Motion- Wrist: (-) National Institutes of Health Strake Seels ()
		National Institutes of Health Stroke Scale- (-) Stroke Impact Scale: (Leva)
		Stroke Impact Scale: (+exp) Crean force: ()
		Grasp force: (-) Pinch force: (+exp)
	EEG guided brain computer interface	
Chang et al. (2020)	E: EEG Motor Imagery Brain	Fugl Meyers Upper Extremity: (-)
Cheng et al. (2020) RCT (6)	Computer Interface assisted Exo-	
N _{start} = 11	1 .	Action Research Arm Test: (-)
INSIGNT— II	glove	

N _{end} = 10 TPS= Chronic	C: Robot exo-glove only Duration: 30min standard, 90min,	
TPS= CHIONIC	3x/wk, 6wks	
Wang et al. (2018) RCT (6) N _{start} =24 N _{end} =24 TPS=Chronic	E: Action observation with EEG guided robot (hand exo) C: Robot (hand exo) Duration: 20x, 3-5x/wk, 5-7wks	Fugl Meyer Assessment Upper Extremity: (-)
Ang et al. (2015) RCT (7) N _{Start} =26 N _{End} =25 TPS=Chronic	E: Brain computer interface + MIT- Manus robotic training C: MIT-Manus robotic training Duration: 90min/d, 3d/wk for 4wk	Fugl Meyer Assessment Upper Extremity: (-)
Curado et al. (2015) RCT (4) N _{start} = 32 N _{end} = Not reported TPS= Chronic	E: Brain Machine Interface + robotic orthosis C: Sham + robot Duration: 1hr, 5x/wk for 4wks	EMG facilitation (-)
Ang et al. (2014) RCT (8) N _{Start} =22 N _{End} =21 TPS=Chronic	E1: Brain-computer interface + haptic knob (HK) robot E2: HK robot C: Standard Arm Therapy (SAT) Duration: 90min/d, 3d/wk for 6wks	E1 vs C Fugl-Meyer Assessment (-) E2 vs C Fugl-Meyer Assessment (-) E1 vs E2 Fugl-Meyer Assessment (-)
Ramos-Murguialday et al. (2013) RCT (8) N _{Start} =32 N _{End} =30 TPS=Chronic	E: Brain machine interface (BMI) + arm and hand orthosis C: Sham BMI Duration: 5d/wk for 4wk	Fugl Meyer Assessment (+exp) Motor Activity Log (-) Ashworth Scale (-)
	Robotics with Electrical	Stimulation
Huang et al. (2020) RCT (7) Nstart= 30 Nend= 30 TPS= Chronic	E: Electromyography -NMES robot (hand exoskelton) C: Electromyography -robot (hand exo) Duration: 20 sessions, 3-5x/wk for up to 7wks, 60min	Fugl-Meyers Assessment: (+exp) Shoulder/Elbow: (+exp) Wrist/Hand: (-) Action Research Arm Test: (-) Modified Ashworth Scale: Elbow: (+exp) Wrist: (-) Finger: (-) Functional Independence Measure: (+exp)
Hayward et al. (2013) RCT (7) Nstart= 10 Nend= 8 TPS= Subacute	E: SMART robot end effector with electric stimulation C: SMART robot end effector without electric stimulation Duration: 60min, 5d/wk, 4wks	Motor Assessment Scale - 6 (Upper Limb Function): (-)
	Arm End Effector versus Functiona	
Hesse et al. (2005) RCT (8) Nstart=44 Nend=39 TPS=Subacute	E: Computerized arm training enabling repetitive practice (Bi-Manu-Track) C: Electrical stimulation Duration: 20min/d, 5d/wk for 6wk	Fugl-Meyer Assessment (+exp)
Hesse et al. (2008) RCT (8) N _{start} =54 N _{end} =47 TPS=Subacute	E: Computerized arm trainer (Reha- Slide Mechanical Arm Trainer) C: Electrical stimulation Duration: 25min/d, 5d/wk for 6wk	Fugl-Meyer Assessment (-)Barthel Index (-)
	Robot combined with Anodal	tDCS versus Robot

Edwards et al. (2019) RCT (8) N _{start} = 82 N _{end} = 69 TPS= Chronic Multi-site	E: Robot (MIT-MANUS) + tDCS (anodal) C: Robot + sham Duration: 1hr, 3x/wk, 12wks + 20 min stim before	Fugle-Meyers Assessment Upper Extremity: (-) Wolf Motor Function Test: (-)	
Mazzoleni et al. (2019) RCT (6) Nstart= 40 Nend= 39 TPS= Acute	E: Robot assisted therapy (InMotion robot wrist + anodal tDCS) C: Robot assisted therapy + sham Duration: 30min, 5x/wk for 6wks	 Fugl-Meyers Assessment Wrist: (-) Shoulder/Elbow: (-) Upper Extremity: (-) Modified Ashworth Scale - Wrist: (-) Motricity Index: (-) Box and Block Test: (-) 	
Dehem et al. (2018) RCT-crossover (6) Nstart =21 NEnd =20 TPS=Chronic	E: Dual tDCS with Upper Limb Robotic Assisted Therapy C: Sham tDCS with Upper Limb Robotic Assisted Therapy Duration: 45min/d, 5d/wk for 6wk	Box and Block Test (+exp) Purdue Pegboard Test (-)	
Mazzoleni et al. 2017 RCT (7) N _{Start} =24 N _{End} =24 TPS=Acute	E: Anodal tDCS with Wrist Robot- Assisted Training C: Wrist Robot-Assisted Training Duration: <i>Not Specified</i>	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motricity Index (-) Box and Block Test (-) 	
Triccas et al. (2015) RCT (8) Nstart=23 Nend=22 TPS=Subacute	E: Anodal tDCS + robotic ArmeoSpring C: Sham tDCS + robotic ArmeoSpring Duration: 45min/d, 3d/wk for 4wk	 Fugl-Meyer Assessment (-) Action Research Arm Test (-) Motor Activity Log (-) Stroke Impact Scale (-) 	
	End Effectors versus E	Exoskeleton	
Lee et al. (2020) RCT (7) Nstart= 39 Nend= 38 TPS= Chronic	E: Robot End Effector (inMotion2) C: Robot exoskeleton (Amreo Power) Duration: 30min, 5d/wk 4wks + same time Occupational therapy	Fugl-Meyer Assessment Upper Extremity: (-) Proximal: (-) Wolf Motor Function Test Functional Ability Score: (+exp) Time: (+exp) Weights: (-) Motor status score (-) Proximal: (-) Stroke Impact Scale: (-) Hand: (-) Strength: (-) Scocial participation: (-)	
	Robotic and Constraint Induced		
Hung et al. (2019) RCT (6) Nstart= 45 Nend= 44 TPS= Chronic	E1: Unilateral robot assisted therapy + CIMT (unilateral arm) E2: Bilateral robot assisted therapy + BAT (Bimanual tracking) C: Robot assisted therapy alone (both modes) Duration: 45min robot, 45min bat/cimt (robot group 90min robot) 3x/wk, 6wks	E1 Vs C Fugl-Meyers Assessment: (-) Stroke Impact Scale (all domains): (-) Wolf Motor Function Test (-) Nottingham Extended Activities of Daily Living Scale: (-) Kitchen: (-) Living affairs: (-) Leisure: (-) Mobility: (-) E2 Vs C Fugl-Meyers Assessment: (-) Stroke Impact Scale (all domains): (-) Wolf Motor Function Test (time, functional ability scale): (-)	

		Nottingham Extended Activities of Daily Living Scale: (-) Kitchen: (-) Living affairs: (-) Leisure: (-) Mobility: (+con) E1 Vs E2 Fugl-Meyers Assessment Total: (+exp2) Stroke Impact Scale (all domains): (-) Wolf Motor Function Test (time, functional ability scale): (-) Nottingham Extended Activities of Daily Living Scale: (-) Kitchen: (-) Living affairs: (-) Leisure: (-) Mobility: (-)
Hung et al. (2019b) RCT (7) Nstart= 30 Nend= 30 TPS= Chronic	E1: Unilateral robot assisted therapy + CIMT (unilateral arm) E2: Bilateral robot assisted therapy + BAT (Bimanual tracking) C: Robot assisted therapy alone (both modes Duration: 45min robot, 45min bat/cimt (robot group 90min robot) 3x/wk, 6wks	E1 Vs C Fugle-Meyers Assessment: (-) Chedoke Arm and Hand Activity Inventory: (-) Goal Attainment Scale: (+exp1) E2 Vs C Fugle-Meyers Assessment (-) Chedoke Arm and Hand Activity Inventory: (-) Goal Attainment Scale: (+exp2) E1 Vs E2 Fugle-Meyers Assessment (-) Chedoke Arm and Hand Activity Inventory: (-) Goal Attainment Scale: (+exp2)
Hsieh et al. (2014) RCT (8) N _{Start} =48 N _{End} =48 TPS=Chronic	E1: Robotic training (Bi-Manu-Track) + dCIT (distributed constraint induced therapy) E2: Robotic therapy C: Conventional therapy Duration: 1hr/d, 5d/wk for 5wk	E1 vs E2 Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) E1 vs C Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) E2 vs C Fugl-Meyer Assessment: (+exp2) Wolf Motor Function Test (+exp2) E1 vs E2, E1 vs C & E2 vs C Motor Activity Log (-)
	Other Robotic Combinations	and Comparisons
Bustamante Valles et al. (2016) RCT (3) N _{Start} =27 N _{End} =20 TPS=Chronic	E: Rehabilitation using a technology- assisted rehabilitation gymnasium (circuit with various robots) C: Traditional therapy Duration: 2hr/d, 4d/wk for 6wk	Fugl-Meyer Assessment (-) Box and Block Test (-)
Straudi et al. (2020) RCT (6) Nstart= 40 Nend= 39 TPS= Subacute	E: Robot arm end effector + FES C: Conventional Duration: 1hr40min, 5x/wk, 6wks	Fugl-Meyers Upper Extremity: (-) Box and Block Test: (-) Wolf Motor Ffunction Test (-) Barthel Idex (-)
Capone et al. (2017) Quasi-RCT (8) NStart=14 NEnd=12 TPS= Chronic	E: Robot-Assisted Therapy with Transcutaneous Stimulation of Vagus Nerve (tVNS) C: Robot-Assisted Therapy with Sham-tVNS	Fugl-Meyer Assessment (+exp)

Carry et al. (2007)	Duration: 1h, 1d/wk for 10d E: Finger tracking training (telerehab)	Box and block test (+con)
RCT (3)	C: Sham (no tracking) (telerehab)	Jebsen hand function test (-)
N _{start} = 25	Duration: 180 reps, 5d/wk 2wks	Finger range of motion (+exp)
N _{end} = 20 TPS= Chronic		
Liu et al. (2009)	E: Sensory robot (inMotion)	Motor Status: (-)
RCT (5)	C: Robot only	Shoulder/Elbow: (-)
N _{start} = 9	Duration: 40min, 3x/wk, 6wks	Wrist/Hand: (-)
N _{end} = 9		()
TPS= Chronic		
Kim et al. (2017)	E: External Focus with Robotic Arm	Joint Independence (-)
RCT (5)	(InMotion ARM)	Fugl-Meyer Assessment (-)
N _{Start} =33	C: Internal Focus with Robotic Arm	Wolf Motor Function Test (-)
N _{End} =30	Duration: 45min/d, 3d/wk for 4wk	
TPS=Chronic		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

- +exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group
- +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group
- indicates no statistically significant between groups differences at α =0.05

Conclusions about Robotics

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Arm end effectors may not have a difference in efficacy when compared to conventional therapy or tast specific training for improving motor function.	52	Amatya et al. 2020; Aprile et al. 2020; Carpinella et al. 2020; Esquenazi et al. 2020; Takebayashi et al. 2020; Dehem et al. 2019; Hung et al. 2019; Duanoravacine et al. 2018; Ellis et al. 2018; Hsieh et al. 2018; Lee et al. 2018; Hsieh et al. 2017; Tomic et al. 2017; Fan et al. 2016; McCabe et al. 2015; Prange et al. 2015; Ang et al. 2014; Lee et al. 2015; Ang et al. 2014; Masiero et al. 2014; Sale et al. 2014; Hsieh et al. 2014; Liao et al. 2014; Hsieh et al. 2014; Liao et al. 2014; Hsieh et al. 2011; Masiero et al. 2011; Hsieh et al. 2011; Masiero et al. 2011; Hsieh et al. 2011; Masiero et al. 2019; Msiero et al. 2019; Msiero et al. 2019; Msiero et al. 2009; Msiero et al. 2009; Msiero et al. 2009; Kabadi et al. 2008; Volpe et al. 2008; Masiero et al. 2006; Kasiero et al. 2006; Kasiero et al. 2006; Lum et al. 2004; Lum et al. 2006; De et al. 2004; Lum et al. 2009; Msiero et al. 2006; Lum et al. 2009; Msiero et al. 2006; Lum et al. 2009; Msiero et al. 2006; Lum et al. 2009; Volpe et al. 2004; Volpe et al. 2009; Volpe et al. 2004; Volpe et al. 2009; Volpe et al. 20
1b	There is conflicting evidence about the effect of an arm/shoulder end-effector with task specific training to improve motor function when compared to the robot alone.	1	Conroy et al. 2019
1b	Arm/shoulder end-effectors (Bi-Manu-Track, MIT-Manus/InMotion) provided in a group setting may not have a difference in efficacy when compared to arm/shoulder end-effectors provided in a one on one setting for improving motor function.	2	Kim et al. 2017; Hesse et al. 2014
1a	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when	5	Cho et al. 2019; Abdollahi et al. 2018; Wright et al. 2018;

	compared to robotic training without assistance for improving motor function.		Rowe et al. 2017; Stein et al. 2004
1b	There is conflicting evidence about the effect of a specific arm/shoulder end-effector (Bi-Manu-Track) to improve motor function when compared to cyclic NMES.	2	Hesse et al. 2008; Hesse et al. 2005
1a	Arm/shoulder exoskeletons may not have a difference in efficacy when compared to conventional therapy for improving motor function.	5	Daunoraviciene et al. 2018; Villafane 2018; Klamroth-Marganska et al. 2014; Reinkensmeyer et al. 2012; Brokaw et al. 2014
1b	Multijoint arm exokeletons may not have a difference in efficacy when compared to single joint exoskeletons for improving motor function.	1	Milot et al. 2013
1a	There is conflicting evidence about the effect of hand end-effectors to improve motor function when compared to conventional therapy.	6	Calabro et al. 2019; Hsieh et al. 2018; Neuendorf et al. 2017; Orihuela-Espina et al. 2016; Sale et al. 2014; Hwang et al. 2012
1a	There is conflicting evidence about the effect of hand exoskeletons to improve motor function when compared to conventional therapy .	6	Rowe et al. 2017; Shin et al. 2016; Zondervan et al. 2016; Wolf et al. 2015; Susanto et al. 2015; Friedman et al. 2014
1a	EEG brain computer interface hand exoskeletons may not have a difference in efficacy when compared to hand exoskeletons alone for improving motor function.	5	Cheng et al. 2020; Wang et al. 2018; Ang et al. 2015; Ang et al. 2014; Ramos- Murguialday et al. 2013
1b	There is conflicting evidence about the effect of hand exoskeleton with electrical sitmulation to improve motor function when compared to hand exoskeleton alone	1	Huang et al. 2020
1a	Robotics with tDCS may not have a difference in efficacy when compared to robotics alone for improving motor function.	4	Edwards et al. 2019; Mazzoleni et al. 2019; Mazzoleni et al. 2017; Triccas et al. 2015
1b	Arm exokeletons may not have a difference in efficacy when compared to arm end-effectors for improving motor function.	1	Lee et al. 2020
1a	Unilateral robotics with CIMT may not have a difference in efficacy when compared to bilateral robotics with bilateral arm training for improving motor function.	2	Hung et al. 2019; Hung et al. 2019

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of arm/shoulder end-effectors to improve muscle strength when compared to conventional therapy or task specific training.	19	Aprile et al. 2020; Hung et al. 2019; Hsieh et al. 2018; Hsieh et al. 2018; Hsieh et al. 2017; Lee et al. 2016; Masiero et al. 2014; Sale et al. 2014; Hsieh et al. 2011; Masiero et al. 2011; Ellis et al. 2009; Volpe et al. 2008; Masiero et al. 2007; Lum et al. 2006; Masiero et al. 2006; La 2006; Masiero et al. 2006; Masiero et al. 2006; Masiero et al. 2006; Masiero et al. 2006; Fasoli et al. 2004;

			Lum et al. 2002; Volpe et al. 2000; Volpe et al. 1999
2	Arm/shoulder end-effectors (MIT-Manus//InMotion) may not have a difference in efficacy when compared to active control therapies (sensorimotor arm training, progressive resistance training) for improving muscle strength.	2	Volpe et al. 2008; Stein et al. 2004
2	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when compared to robotic training without assistance for improving muscle strength.	1	Stein et al. 2004
1a	Arm/shoulder exoskeletons may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	4	Villafane 2018; Taveggia et al. 2016; Klamroth-Marganska et al. 2014; Reinkensmeyer et al. 2012
1b	Multijoint arm exokeletons may not have a difference in efficacy when compared to single joint exoskeletons for improving muscle strength.	1	Milot et al. 2013
1b	Hand end-effector may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	3	Hsieh et al. 2018; Neuendorf et al. 2017; Orihuela- Espina et al. 2016
1b	Hand exoskeletons (Gloreha) may produce greater improvements in muscle strength than conventional therapy.	1	Vanoglio et al. 2017
1a	Robotics with tDCS may not have a difference in efficacy when compared to robotics alone for improving muscle strength.	2	Mazzoleni et al. 2019; Mazzoleni et al. 2017

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1b	Arm/shoulder end-effectors may not have a difference in efficacy when compared to conventional therapy or task specific training for improving dexterity.	6	Dehem et al. 2019; Schuster-Amft et al. 2018; Hsieh et al. 2017; Hesse et al. 2014; Masiero et al. 2014; Masiero et al. 2011
2	Arm/shoulder end-effectors (Bi-Manu-Track, MIT-Manus/InMotion) provided in a group setting may not have a difference in efficacy when compared to arm/shoulder end-effectors provided in a one on one setting for improving dexterity.	1	Hesse et al. 2014
1a	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when compared to robotic training without assistance for improving dexterity.	3	Cho et al. 2019; Abdollahi et al. 2018; Rowe et al. 2017
1b	Arm/shoulder exoskeletons may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	2	Brokaw et al. 2014; Reinkensmeyer et al. 2012

1b	Multijoint arm exokeletons may not have a difference in efficacy when compared to single joint	1	Milot et al. 2013
	exoskeletons for improving dexterity.		
1a	There is conflicting evidence about the effect of hand	2	Sale et al. 2014; Hwang et al. 2012
·u	end-effectors (Amadeo hand robot) to improve		Tiwang et al. 2012
	dexterity when compared to conventional therapy.		
1a	There is conflicting evidence about the effect of hand exoskeletons (Glohera, SmartGlove, Music Glove) to improve dexterity when compared to conventional therapy.	7	Lee et al. 2020; Vanoglio et al. 2017; Shin et al. 2016; Zondervan et al. 2016; Friedman et al. 2014; Carmeli et al. 2011; Takehashi et al. 2008
1a	Robotics with tDCS may not have a difference in efficacy when compared to robotics alone for improving dexterity.	3	Mazzoleni et al. 2019; Dehem et al. 2018; Mazzoleni et al. 2017

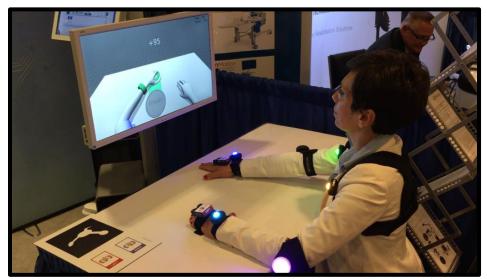
RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of arm/shoulder end-effectors to improve range of motion when compared to conventional therapy or task specific training.	5	Carpinella et al. 2020; Esquenazi et al. 2020; Kim et al. 2019; Duanoravacine et al. 2018; Ellis et al. 2018	
1b	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when compared to robotic training without assistance for improving range of motion.	1	Wright et al. 2018	
1b	There is conflicting evidence about the effect of Arm/shoulder exoskeletons to improve range of motion when compared to conventional therapy.	2	Horsley et al. 2019; Daunoraviciene et al. 2018	

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1a	Arm/shoulder end-effectors may not have a difference in efficacy when compared to conventional therapy or task-oriented training for improving performance of activities of daily living.	33	Amatya et al. 2020; Aprile et al. 2020; Carpinella et al. 2020; Chinembiri et al. 2020; Esquenazi et al. 2020; Dehem et al. 2019; Hung et al. 2019; Hus et al. 2019; Hus et al. 2018; Hsieh et al. 2018; Lee et al. 2018; Schuster-Amft et al. 2018; Hsieh et al. 2017; Tomic et al. 2017; Lee et al. 2016; Takahashi et al. 2016; McCabe et al. 2015; Hsieh et al. 2016; McCabe et al. 2015; Hsieh et al. 2014; Lemmens et al. 2014; Massiero et al. 2014; Timmermans et al. 2014; Hsieh et al. 2012; Liao et al. 2012; Burgar et al. 2011; Hsieh et al. 2011; Massiero et al. 2011; Wagner et al. 2011; Massiero et al. 2001; Bussiero et al. 2001; Lum et al. 2006; Massiero et al. 2006; Massiero et al. 2006; Massiero et al. 2007; Lum et al. 2000; Burgar et al. 2007; Unm et al. 2000; Unger et al. 2000 voloe et al. 2000	
1a	Arm/shoulder end-effectors (Haptic Master, MIT-Manus/InMotion) may not have a difference in efficacy when compared to active control therapies (progressive abduction loading therapy or motor learning) for improving performance of activities of daily living.	2	Ellis et al. 2018; McCabe et al. 2015	

1b	Arm/shoulder end-effectors with task specific training may not have a difference in efficacy when compared to arm/shoulder end-effectors provided in a one on one setting for improving performance of activities of daily living.	1	Conroy et al. 2019
1a	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when compared to robotic training without assistance for improving performance of activities of daily living.	2	Abdollahi et al. 2018; Rowe et al. 2017
1a	Arm/shoulder exoskeletons may not have a difference in efficacy when compared to conventional therapy for improving performance of activities of daily living.	5	Horsley et al. 2019; Daunoraviciene et al. 2018; Villafane 2018; Taveggia et al. 2016; Klamroth-Marganska et al. 2014
1b	Multijoint arm exokeletons may not have a difference in efficacy when compared to single joint exoskeletons for improving performance of activities of daily living.	1	Milot et al. 2013
1b	Hand end-effector (Amadeo hand robot) may not have a difference in efficacy when compared to early passive training for improving performance of activities of daily living.	1	Hwang et al. 2012
1a	Hand exoskeletons may produce greater improvements in performance of activities of daily living than conventional therapy.	7	Park et al. 2018; Thielbar et al. 2017; Shin et al. 2016; Zondervan et al. 2016; Linder et al. 2015; Kutner et al. 2010; Takehashi et al. 2008
1b	EEG brain computer interface hand exoskeletons may not have a difference in efficacy when compared to hand exoskeletons alone for improving performance on activities of daily living function.	1	Ramos-Murguialday et al. 2013
1a	There is conflicting evidence about the effect of robotics with electrical sitmulation to improve activities of daily living when compared to robotics alone.	2	Huang et al. 2020; Hayward et al. 2013
1b	There is conflicting evidence about the effect of a specific arm/shoulder end-effector (Bi-Manu-Track) to improve activities of daily living when compared to cyclic NMES.	1	Hesse et al. 2008;
1b	Robotics with tDCS may not have a difference in efficacy when compared to robotics alone for improving performance on activities of daily living function.	1	Triccas et al. 2015
1b	Arm exokeletons may not have a difference in efficacy when compared to arm end-effectors for improving performance on activities of daily living function.	1	Lee et al. 2020
1a	Unilateral robotics with CIMT may not have a difference in efficacy when compared to bilateral	2	Hung et al. 2019; Hung et al. 2019
			·

robotics with bilateral arm training for improving	
performance on activities of daily living function.	

PROPRIOCEPTION				
LoE Conclusion Statement RCTs Reference				
1b	Arm/shoulder exoskeletons (Pneu-WREX) may produce greater improvements in proprioception than conventional therapy.	1	Reinkensmeyer et al. 2012	


SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	Arm/shoulder end-effectors may not have a difference in efficacy when compared to conventional therapy for improving spasticity.	11	Aprile et al. 2020; Carpinella et al. 2020; Esquenazi et al. 2020; Hung et al. 2019; Burgar et al. 2011; Masiero et al. 2011; Lo et al. 2010; Hu et al. 2009; Masiero et al. 2007; Lum et al. 2006; Volpe et al. 2004
1b	Arm/shoulder end-effectors with force feedback/ assistance may not have a difference in efficacy when compared to robotic training without assistance for improving spasticity.	2	Wright et al. 2018; Stein et al. 2004
1a	Arm/shoulder exoskeletons may not have a difference in efficacy when compared to conventional therapy for improving spasticity.	4	Villafane et al. 2018; Taveggia et al. 2016; Klamroth-Marganska et al. 2014; De Araujo et al. 2011
1b	Hand end-effector (Amadeo hand robot) may not have a difference in efficacy when compared to early passive training for improving spasticity.	1	Hwang et al. 2012
1b	Hand exoskeletons (Gloreha) may produce greater improvements in spasticity than conventional therapy.	1	Vanoglio et al. 2017
1b	EEG brain computer interface hand exoskeletons may not have a difference in efficacy when compared to hand exoskeletons alone for improving spasticity.	1	Ramos-Murguialday et al. 2013
1b	Hand exoskeleton with electrical stimulation may not have a difference in efficacy when compared to hand exoskeletons alone for improving spasticity.	1	Huang et al. 2020
1a	Robotics with tDCS may not have a difference in efficacy when compared to robotics alone for improving spasticity.	2	Mazzoleni et al. 2019; Mazzoleni et al. 2017

Key points

The evidence is mixed regarding arm/shoulder end-effector robotics, alone or in combination with other therapy approaches, for upper limb rehabilitation following stroke.

The evidence is mixed regarding arm/shoulder exoskeleton, hand exoskeleton, and hand end-effector robotics for upper limb rehabilitation.

Virtual Reality

Adopted from: https://philadelphia.cbslocal.com/2016/05/15/virtual-reality-stroke-rehab/

Virtual reality interventions are described as the use of immersive multimedia created through computer programs that allows users to engage in simulated environments representative of both real-world and imagined places and objects (Iruthayarajah et al. 2017; Laver et al. 2017). These virtual reality interventions are presented typically as games with haptic feedback, that allow for the creation of a multisensory experience. Virtual reality interventions meet as the four guiding principles of rehabilitation: intensity, task-specific training, biofeedback and motivation (Dias et al. 2019). Research on the use of virtual reality for stroke rehabilitation is increasing as technology becomes more accessible and affordable. This includes using existing gaming consoles (e.g. Nintendo Wii, Xbox Kinect, Playstation Eyetoy) for therapeutic purposes or designing new systems specifically for rehabilitation (Laver et al. 2017).

A total of 57 RCTs evaluating virtual reality interventions for upper extremity motor rehabilitation were found, the characteristics of these interventions are described below.

48 RCTs examined virtual reality compared to conventional care or sham (Laffont et al. 2020; Lin et al. 2020; Henrique et al. 2019; Hung et al. 2019; Norouzi-Gheidari et al. 2019; Ogun et al. 2019; Oh et al. 2019; Rogers et al. 2019; Yacoby et al. 2019; Asfar et al. 2018; Askin et al. 2018; Faria et al. 2018; Kim et al. 2018; Kiper et al. 2018; Lee et al. 2018; Adie et al. 2017; Ballester et al. 2017; Brunner et al. 2017; Rand et al. 2017; Standen et al. 2017; Stockley et al. 2017; Turkbey et al. 2017; Wang et al. 2017; Choi et al. 2016; Givon et al. 2016; Kong et al. 2016; Lee et al. 2016a; Lee et al. 2016c; Sapsonik et al. 2016; Bower et al. 2015; Da Silva Ribeiro et al. 2015; Shin et al. 2015; Simsek et al. 2015; Choi et al. 2014; Fan et al. 2014; Kiper et al. 2014; Shin et al. 2014; Thielbar et al. 2014; Duff et al. 2013; Lee et al. 2013; Sin & Lee, 2013; Crosbie et al. 2012; Da Silva et al. 2011; Kiper et al. 2011; Piron et al. 2010; Sapsonik et al. 2010; Yavuzer et al. 2008; Jang et al. 2005). One RCT examined virtual reality combined with bilateral arm training compared to bilateral arm training alone (Lee et al. 2016b). One RCT examined virtual reality combined with tDCS (Lee & Chun, 2014). One RCT examined virtual reality with a hand orthosis (Nijenhuis et al. 2017). One RCT compared virtual reality to mCIMT (McNulty et al. 2015). One

RCT compared asymmetric training with virtual reality compared to symmetric (Lee et al. 2014). One RCT examined virtual reality combined with mirror therapy (Choi et al. 2019). One RCT compared virtual reality combined with stretching (Dos Santos Junior et al. 2019). One RCT compared multi-user virtual reality to a single user virtual reality (Thielbar et al. 2020).

The methodological details and results of all 57 RCTs are presented in Table 19.

Table 19. RCTs Evaluating Virtual Reality Interventions for Upper Extremity Motor Rehabilitation

Renabilitation	Rehabilitation				
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)			
Virtual rea	ality training compared to convention	nal therapy, recreational therapy or sham			
Laffont et al. (2020) RCT (8) N _{start} = 51 N _{end} = 46 TPS= Acute	E: VR (video games) C: Conventional therapy Duration: 90-120min conventional therapy/d, + 15-45min, 5x/wk 6wks of intervention or control exercise	Fugle-Meyers Assessment Upper Extremity: (-) Proximal: (-) Distal: (+exp) Box and Block Test: (+exp) Motor Activity Log: (-) Barthel Index: (-) Wolf Motor Function Test: (-)			
Lin et al. (2020) RCT (7) N _{start} = 152 N _{end} = 145 TPS= Acute	E: Early VR Rehabilitation C: Early conventional rehabilitation Duration: 8hrs/wk for 4wks	Manual Muscle Test (-) Barthel Index: (+exp)			
Henrique et al. (2019) RCT (5) N _{start} = 31 N _{end} = 31 TPS= Chronic	E: VR motion rehab AVE 3D C: Conventional therapy Duration: 30min, 2x/wk for 12wks	Fugle-Meyers Assessment Upper Extremity: (+exp) Shoulder/Elbow/ forearm: (+exp) Wrist: (-) Hand: (-)			
Hung et al. (2019) RCT (8) N _{start} = 33 N _{end} = 32 TPS= Chronic	E: Modified Kinect VR C: Conventional therapy Duration: 30min, 2-3xwk, 3mo	Fugle-Meyers Assessment Upper Extremity: (-) Proximal: (-) Distal: (-) Wolf Motor Function Test: Time: (-) Functional Activity Scale: (-) Motor Activity Log (Quality of Movement, Amount of Use): (-)			
Norouzi-Gheidari et al. (2019) RCT (6) N _{start=} 23 N _{end=} 18 TPS= Chronic	E: Jintronix VR C: Conventional therapy Duration: 2-3x/wk, 30-45min, 4wks add on to conventional therapy	Fugl Meyer Assessment upper extremity: (-) Box and Block Test: (-) MAL: Amount of Use: (-) Quality of Movement: (+exp) Stroke Impact Scale total: (+exp)			
Ögün et al. (2019) RCT (6) Nstart= 84 Nend= 65 TPS= Chronic	E: Leap motion VR C: Sham Duration: 60min, 3x/wk for 6wks	Fugl-Meyers Assessment Upper Extremity: (+exp) Action Research Arm Test: (+exp) Functional Independence Measure: (+exp) Performance Assessment of Self-Care Skill – Basic Activities Daily Living: (+exp) Performance Assessment of Self-Care Skills – Instrumental Activities Daily Living: (+exp)			
Oh et al. (2019) RCT (7) N _{start} = 33 N _{end} = 31	E: Joystim VR C: Conventional therapy Duration: 30min, 3x/wk for 6wks	Tip Pinch Power: (+exp) Grip, Palmar Pinch, Lateral Pinch: (-) Modified Ashworth Scale Elbow Flexion: (-)			

TPS= Chronic		 Elbow Extension: (-) Wrist Extension: (-) Manual Muscle Test Flexion: (-) Extension: (-) Wrist: (-) Elbow: (-) Finger: (-) Shoulder: (-) Fugl-Meyers Assessment Upper Extremity: (-) Shoulder/Elbow: (-) Wrist: (-) Hand: (-) Coordination: (-) Box and Block Test: (-) Nine Hole Peg Test: (-)
Rogers et al. (2019) RCT (6) N _{start} = 21 N _{end} = 21 TPS= Acute	E: VR C: Conventional therapy Duration: 3hrs/d rehab, 30-40min 3x/wk, 4wks of VR (elements)	Box and Block Test: (+exp) Neurobehavioral Functional Inventory Motor (+exp) Cognitive (+exp) Depression (-) Somatic (-) Communication (+exp) Aggression (-)
Yacoby et al. (2019) RCT (5) N _{start} =24 N _{end} =20 TPS=Chronic	E: VR (kinect or PS eyetoy) C: Graded Repetitive Arm Supplementary Program (GRASP) Duration: ~ 4hrs/wk for 5wks	Adherence: (+con)Satisfaction: (-)Enjoyment: (-)
Asfar et al. (2018) RCT (4) NStart= 42 NEnd=35 TPS= Subacute	E: Virtual Reality (Xbox kinict 30min/5x/4wk + conventional therapy) C: Sham Duration: 60min, 5x/wk for 4k	Fugl–Meyer Assessment Upper Extremity: (-) Box and Block Test: (+exp) Functional Independence Measure Self Care: (-)
Askin et al. (2018) RCT (6) N _{Start} =40 N _{End} =38 TPS=Chronic	E: Xbox Kinect-based virtual reality training + physical therapy C: Physical therapy Duration: 1h/d, 5d/wk for 4wks	 Fugl-Meyer Assessment (+exp) Motricity Index (+exp) Active range of motion (+exp) Brunnstrom Recovery Stages (-) Modified Ashworth Scale (-) Box and Block Test (-)
Faria et al. (2018) RCT (4) N _{Start} = 32 N _{End} = 24 TPS=Chronic	E: Virtual reality (Reh@Task) C: Time-matched standard occupational therapy Duration: 45min/d, 3d/wk for 4wk	 Fugl-Meyer Assessment (+exp) Chedoke Arm and Hand Activity Inventory (-) Barthel Index (-) Motricity Index (-) Modified Ashworth Scale (-)
Kim et al. (2018) RCT (8) Nstart =23 N _{End} =19 TPS=Chronic	E: Kinect-based virtual reality C: Sham virtual reality Duration: 30min/d, 5d/wk for 2wk	 Fugl-Meyer Assessment (-) Brunnstrom Stage: Arm and Hand (-) Box and Block Test (-) Korean Modified Barthel Index (-)
Kiper et al. (2018) RCT (7) N _{Start} =139 N _{End} =136 TPS=Subacute	E: Reinforced feedback in virtual environment + conventional rehabilitation C: Conventional rehabilitation Duration: 1h/d, 5d/wk for 4wk	 Fugl-Meyer Assessment (+exp) Functional Independence Measure (+exp) National Institute of Health Stroke Scale (+exp)
Lee et al. (2018) RCT (6) N _{Start} =31	E: Virtual reality canoe paddle training + conventional therapy C: Conventional therapy	Manual Function Test (+exp)

N _{End} =30	Duration: 30min/d, 3d/wk for 5wk	
TPS=Subacute Adie et al. (2017) RCT (7) Nstart =235 NEnd =209 TPS=Chronic	E: Wii arm exercises C: Home-based arm exercises Duration: 45min/d for 6wk	Action Research Arm Test (-) Stroke Impact Questionnaire (-) Canadian Occupational Performance Measure (-) Motor Activity Log (-)
Ballester et al. (2017) RCT (5) Nstart =39 NEnd =35 TPS=Chronic	E: Home-based virtual reality C: Home-based occupational therapy Duration: 30min/d, 5d/wk, 3wk	 Fugl-Meyer Assessment (-) Chedoke Arm and Hand Activity Inventory (+exp) Barthel Index (-) Medical Research Council Scale (-) Ashworth Scale (-) Grip force (-)
Brunner et al. (2017) RCT (5) N _{Start} =120 N _{End} =102 TPS=Subacute	E: Virtual reality training C: Conventional training Duration: 60min/d, 4-5d/wk for 4wk	Action Research Arm Test (-) Box and Block Test (-) Functional Independence Measure (-)
Rand et al. (2017) RCT (7) N _{Start} =24 N _{End} =21 TPS=Chronic	E: Video games self-training C: Traditional self-training Duration: 60min/d, 6d/wk for 5wk	 Action Research Arm Test (-) Motor Activity Log (-) Box and Block Test (-)
Standen et al. (2017) RCT (6) N _{Start} =27 N _{End} =18 TPS=Subacute	E: Home-based virtual reality C: Conventional therapy Duration: up to 60min/d, 7d/wk for 8wk	 Motor Activity Log (+exp) Wolf Motor Function Test (-) Wolf Grip Strength (+exp) Nine-Hole Peg Test (-) Nottingham Extended Activities of Daily Living (-)
Stockley et al. (2017) RCT (7) Nstart= 12 Nend= 12 TPS= Chronic	E: VR (YOUgrabber) C: Gym Duration: 30min, 18x/ 12wks	Motor Activity Log Amount of Use: (-) Motor Activity Log Quality of Use: (-) Box and Block Test: (-) Fatigue severity scale: (-)
Turkbey et al. (2017) RCT (7) NStart =20 NEnd =19 TPS=Subacute	E: Xbox Kinect virtual reality training + conventional rehabilitation C: Conventional rehabilitation Duration: 60min/d, 5d/wk for 4wk	 Box and Block Test (+exp) Wolf Motor Function Test (+exp) Brunnstrom Motor Recovery Stage (+exp) Functional Independence Measure (-)
Wang et al. (2017) RCT (6) N _{start} =26 N _{end} =26 TPS=Subacute	E: VR (leap motion) C: Conventional rehabilitation Duration: 45min, 5d/wk, 4wks (conventional and experimental add on)	Wolf Motor Function Test: Score: (+exp) Time: (+exp)
Choi et al. (2016) RCT (6) N _{Start} =24 N _{End} =24	E: Virtual reality rehabilitation program + conventional occupational therapy C: Conventional occupational therapy Duration: 30min/d, 5d/wk for 2wk	 Fugl-Meyer Assessment (+exp) Brunnstrom Stage (+exp) Manual Muscle Test (+exp) Modified Barthel Index (-)
Givon et al. (2016) RCT (6) Nstart = 47 NEnd = 43 TPS=Chronic	E: Virtual reality video game therapy C: Traditional therapy Duration: 60min/d, 2d/wk for 12wk	Action Research Arm Test (-) Grip strength (-)
Kong et al. (2016) RCT (7) N _{Start} =105 N _{End} =97 TPS=Acute	E: Nintendo Wii virtual reality training C: Conventional therapy Duration: 60min/d, 4d/wk for 3wk	Fugl-Meyer Assessment (-) Action Research Arm Test (-) Stroke Impact Scale (-) Functional Independence Measure (-)

Lee et al. (2016a)	E: Virtual reality-based rehabilitation	Fugl-Meyer Assessment (+exp)
RCT (7)	C: Group-based rehabilitation	Manual Function Test (+exp)
N _{Start} =26	Duration: 30min/d, 3d/wk for 8wk	Box and Block Test (-)
N _{End} =26	,	Modified Barthel Index (-)
TPS=Chronic		
Lee et al. (2016c)	E: Canoe game-based virtual reality	Fugl-Meyer Assessment (+exp)
RCT (5)	training + conventional rehabilitation	T ugi Meyer Assessment (Texp)
N _{Start} =14		
Nend = 10	C: Conventional rehabilitation	
TPS=Acute	Duration: 30min/d, 3d/wk for 4wk	
Saposnik et al. (2016)	E: Virtual reality training using	Wolf Motor Function Test (-)
RCT (6)	Nintendo Wii	Box and Block Test (+con)
N _{Start} =141	C: Recreational activities	Stroke Impact Scale (-)
N _{End} =121	Duration: 60min/d, 5d/wk for 2wk	Barthel Index (-)
TPS=Acute		Functional Independence Measure (-)
		Grip Strength (-)
Bower et al. (2015)	E: VR motion-controlled games - 3D	Functional Independence Measure
RCT (7)	depth camera (similar to xbox	Transfers: (-)
N _{start} =16	kinect)	Mobility: (-)
N _{end} = 16	C: Conventional therapy	• Stairs: (-)
TPS= Subacute	Duration: VR (40min/2x/4wk) and	Motor Assessment Scale: (-)
11 6= Cubacate	conv rehab (length unspecified)	()
	conviteriab (length unspecified)	
da Silva Ribeiro et al. (2015)	E: Virtual reality training using	Fugl-Meyer Assessment (-)
RCT (7)	Nintendo Wii	
N _{Start} =30	C: Conventional physical therapy	
N _{End} =30	Duration: 20min/d, 3d/wk for 12wk	
TPS=Chronic		
Shin et al. (2015)	E: Virtual reality + conventional	Fugl-Meyer Assessment (-)
		• Fugi-ivieyer Assessment (-)
RCT (6)	occupational therapy	
N _{Start} =35	C: Conventional occupational	
N _{End} =32	therapy	
TPS=Chronic	Duration: 30min/d, 5d/wk for 4wk	
<u>Şimşek al. (</u> 2015)	E: VR (wii)	Functional Independence Measure, all subscales: (-)
RCT (7)	C: Bobath NDT	Satisfaction (+exp)
N _{start} = 44	Duration: 45-60min 3d/wk, 10wks	
N _{end} = 22		
TPS= Subacute		
Choi et al. (2014)	E: Virtual reality therapy using	Fugl-Meyer Assessment (-)
RCT (8)	Nintendo Wii	Box and Block Test (-)
N _{Start} =20		Manual Function Test (-)
	C: Conventional occupational	Grip strength (-)
N _{End} =20	therapy	Modified Barthel Index (-)
TPS=Chronic	Duration: 30min/d, 5d/wk for 4wk	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Fan et al. (2014)	E1: Virtual reality	E1 vs E2 vs E3 vs C
RCT (7)	E2: Conventional therapy	Jebsen-Taylor Hand Function Test (-)
N _{Start} =27	E3: Placebo board game	Stroke Impact Scale (-)
N _{End} =20	C: No treatment	
TPS=Chronic	Duration: 60min/d, 3d/wk for 3wk	
Kiper et al. (2014)	E: Reinforced feedback in virtual	Fugl-Meyer Assessment (+exp)
		Functional Independence Measure (+exp)
RCT (6)	environment + traditional	Tuniononial independence ineasure (Texp)
N _{Start} =46	rehabilitation	
N _{End} =44	C: Traditional rehabilitation	
TPS=Chronic	Duration: 2h/d, 5d/wk for 4wk	
Shin et al. (2014)	E: Virtual reality training +	Fugl-Meyer Assessment (-)
RCT (5)	conventional occupational therapy	Modified Barthel Index (-)
N _{Start} =16	C: Occupational therapy	Medical Research Council Score (-)
Nend=16	Duration: 30min/d, 5d/wk for 2wk	Range of Motion (-)
TPS=Chronic	Saration. Committa, Out With 101 ZWI	
11 0-011101110		

RCT (6) N _{Start} =14 N _{End} =14 TPS=Chronic Duff et al. (2013) RCT (5) N _{Start} =25 N _{End} =21 TPS=Chronic C: Adaptive mixed reality rehabilitation C: Traditional therapy N _{Start} =25 N _{End} =21 Duration: 60min/d, 3d/wk for 4wk TPS=Chronic Lee et al. (2013) RCT (6) C: Social therapy Signature of the start o	Action Research Arm Test (+exp) ebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Grip Strength (-)
N _{Start} =14 N _{End} =14 TPS=Chronic Duff et al. (2013) RCT (5) N _{Start} =25 N _{End} =21 TPS=Chronic E: Adaptive mixed reality rehabilitation C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk TPS=Chronic Lee et al. (2013) RCT (6) E: Xbox Kinect-based virtual reality + conventional occupational therapy M	fugl-Meyer Assessment (-)
NEnd=14 TPS=Chronic Duff et al. (2013) RCT (5) Nstart=25 NEnd=21 TPS=Chronic Lee et al. (2013) RCT (6) E: Adaptive mixed reality rehabilitation C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk E: Xbox Kinect-based virtual reality + conventional occupational therapy • M	
TPS=Chronic Duff et al. (2013) RCT (5) N _{Start} =25 N _{End} =21 TPS=Chronic Lee et al. (2013) RCT (6) E: Adaptive mixed reality rehabilitation C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk E: Xbox Kinect-based virtual reality + conventional occupational therapy • M	
Duff et al. (2013) RCT (5) Nstart=25 NEnd=21 TPS=Chronic Lee et al. (2013) RCT (6) E: Adaptive mixed reality rehabilitation C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk E: Xbox Kinect-based virtual reality + conventional occupational therapy • M	Pinch Strength (-)
RCT (5) rehabilitation C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk TPS=Chronic Lee et al. (2013) E: Xbox Kinect-based virtual reality + conventional occupational therapy Means of the superscript of the supersc	ugl-Meyer Assessment (+con)
N _{Start} =25 N _{End} =21 TPS=Chronic Lee et al. (2013) RCT (6) C: Traditional therapy Duration: 60min/d, 3d/wk for 4wk • M • M • M • M • M • M	Volf Motor Function Test (-)
N _{End} =21 Duration: 60min/d, 3d/wk for 4wk • M TPS=Chronic Lee et al. (2013) E: Xbox Kinect-based virtual reality • M RCT (6) + conventional occupational therapy • M	Stroke Impact Scale (-)
TPS=Chronic Lee et al. (2013) RCT (6) E: Xbox Kinect-based virtual reality + conventional occupational therapy • M	Notor Activity Log (-)
RCT (6) + conventional occupational therapy • M	
RCT (6) + conventional occupational therapy • M	Manual Muscle Test (-)
	Modified Ashworth Scale (-)
	functional Independence Measure (-)
N _{End} =14 therapy	
TPS=Chronic Duration: 60min/d, 3d/wk for 6wk	
Sin & Lee (2013) E: Xbox Kinect-based virtual reality • R	Range of Motion (+exp)
	ugl-Meyer Assessment (+exp)
N _{Start} =40 therapy • B	Box and Block Test (+exp)
N _{End} =35 C: Conventional occupational	
TPS=Chronic therapy	
Duration: 30min/d, 3d/wk for 6wk	
· , , , , , , , , , , , , , , , ,	Notricity Index (-)
	Action Research Arm Test (-)
N _{start} =18 Duration: 30-45min/d, 3d/wk for 3wk	
N _{end} =17	
TPS=Chronic	
	Vs C1
	arthel's Index: (-)
1.00001 = 0	otricity Index (-) ugl Meyers Assessment Upper Extremity: (-)
1 9/19	Arm: (+exp)
TPS= Acute Duration: 20min, 3x/wk for 12wks	• Wrist/Hand: (-)
	hedoke Arm and Hand Activity Inventory: (+exp)
	<u>Vs C2</u>
	arthel's Index: (-)
	otricity Index (-)
• Fu	ugl Meyers Assessment Upper Extremity: (-)
	• Arm: (+exp)
l Ch	Wrist/Hand: (-) hedoke Arm and Hand Activity Inventory: (+exp)
	ugl-Meyers Assessment Upper Extremity: (+exp)
	odified Ashworth Scale: (-)
	unctional Independence Measure: (+exp)
N _{end} = 80 traditional neuromotor rehabilitation	and a made in a
TPS= Chronic (TNR)	
C: TNR only	
Duration: 2 hr (exp group: 1 hr	
RFVE and 1 hr TNR, con group: 2 hr	
TNR programme), 5x/wk for 4wks	
Piron et al. 2010 E: Visual and knowledge of results • Fe	ugl-Meyers Assessment (+exp)
RCT (8) feedback in VR environment	
N _{start} = 57 C: Bobath approach	
N _{end} = 50 Duration: 1hr, 5days/week for 4	
TPS= Chronic weeks	
	Volf Motor Function Test (+exp)
	Grip strength (-)
N _{start} =22	Box and Block Test (-)
Saposnik et al. (2010) E: Virtual reality training using Nintendo Wii • W	Grip strength (-)

	<u> </u>	
Nend=16	Duration: 60min/d, 4d/wk for 2wk	Stroke Impact Scale (-)
TPS=Acute		
Yavuzer et al. (2008)	E: Playstation EyeToy games +	Brunnstrom Recovery Stages (-)
RCT (6)	conventional therapy	Functional Independence Measure (+exp)
N _{start} =20	C: Sham therapy + conventional	
N _{end} =20	therapy	
TPS=Subacute	Duration: 30min/d, 5d/wk for 4wk	
Jang et al. (2005)	E: Virtual reality training	Box and Block test (+exp)
RCT (5)	C: No treatment	Fugl-Meyer Assessment (+exp)
N _{start} =10	Duration: 60min/d, 5d/wk for 4wk	Manual Function Test (+exp)
N _{end} = 10		•
TPS=Chronic		
	Virtual reality with bilateral arm training	ng compared to hilateral arm training
Log et al. (2016b)		
Lee et al. (2016b)	E: Virtual reality-based bilateral arm	Jebsen Taylor Hand Function Test (+exp) Pay and Block Test (+exp)
RCT (6)	training	Box and Block Test (+exp) Grooved Pegboard Test (+exp)
N _{Start} =20	C: Bilateral arm training	Digital Manual Muscle Test (+exp)
N _{End} =18	Duration: 60min/d, 5d/wk for 4wk	Digital Maridal Muscle Test (Texp)
TPS=Chronic		
		ES compared to FES
Lee et al. (2018)	E: Virtual reality + functional	Fugl-Meyer Assessment (+exp)
RCT (7)	electrical stimulation	Wolf Motor Function Test (-)
N _{Start} =48	C: Functional electrical stimulation	Box and Block Test (-)
N _{End} =41	Duration: 30min/d, 5d/wk for 4wk	Jebsen-Taylor Hand Function Test (-)
TPS=Chronic		Stroke Impact Scale (-)
		d combined with cathodal tDCS
Lee & Chun (2014)	E1: Cathodal transcranial direct	E3 vs E2/E1
RCT (7)	current stimulation (tDCS)	Manual Function Test (+exp ₃)
N _{Start} =64	E2: Virtual reality	Fugl-Meyer Assessment (+exp ₃)
N _{End} =59	E3: Cathodal tDCS + virtual reality	Manual Muscle Test (-)
TPS=Subacute	Duration: 30min/d, 5d/wk for 3wk	Box and Block Test (-)
		Modified Ashworth Scale (-)
		Modified Barthel Index (-)
		E2 vs E1
		Manual Function Test (+exp ₂) Fuel Mayor Assessment (+exp ₂)
		Fugl-Meyer Assessment (+exp₂)Manual Muscle Test (-)
		Box and Block Test (-)
		Modified Ashworth Scale (-)
		Modified Astrivorum Scale (-) Modified Barthel Index (-)
	Virtual reality with a hand arthonic	
Nijenhuje et el. (2017)		compared to conventional therapy
Nijenhuis et al. (2017)	E: Hand orthosis + computerised	Action Research Arm Test (-) Fuel Mayor Accessment (-)
RCT (6) N _{Start} =20	gaming exercises C: Conventional exercise	Fugl-Meyer Assessment (-) Grip Strength (-)
N _{End} =19		Box and Block Test (-)
TPS=Chronic	Duration: 30min/d, 6d/wk for 6wk	Motor Activity Log (-)
TF3=CIIIOIIIC		Stroke Impact Scale (-)
	Virtual reality com	1 37
MoNulty of al. (2015)	E: Nintendo Wii-based movement	Wolf Motor Function Test (-)
McNulty et al. (2015) RCT (7)		Wolf Motor Function Test (-) Motor Activity Log (-)
	therapy C: Modified constraint-induced	Fugl-Meyer Assessment (-)
N _{Start} =41	I	Modified Ashworth Scale (-)
N _{End} =40	movement therapy	Box and Block Test (-)
TPS=Chronic	Duration: 60min/d, 5d/wk for 2wk	Grooved Pegboard Test (-)
		Range of motion (-)
	Asymmetric training with virtual real	•
Lee et al. (2014)	E: Asymmetric training using virtual	Fugl-Meyer Assessment (+exp)
RCT (5)	reality + conventional physical	Box and Block test (+exp)
* (-)	therapy	Grip strength (+exp)
	a lorupy	i ' ' 9' \ ' 17

N _{Start} =30	C: Symmetric training + conventional	1 ' '		
N _{End} =24	physical therapy	Range of motion (+exp)		
TPS=Chronic	Duration: 60min/d, 5d/wk for 4wk			
	Virtual Reality combined with Mirror Therapy			
Choi et al. (2019)	E1: Leap motion VR + mirror therapy	E1 Vs C		
RCT (7)	E2: Mirror therapy (conventional)	Manual Function Test: (+exp1)		
N _{start} = 36	C: Sham	<u>E2 Vs C</u>		
N _{end} = 36	Duration: 30min, 3x/wk for 5wks	Manual Function Test: (+exp2)		
TPS= Chronic		<u>E1 Vs E2</u>		
		Manual Function Test: (+exp1)		
	VR combined with stretching co	ompared to VR or stretching		
Dos Santos Junior et al.	E: Proprioceptive Neuromuscular	Fugl-Meyers Assessment: (-)		
<u>(2019)</u>	Facilitation (PNF) + VR	Passive Motion and Pain: (-)		
RCT (6)	C1: PNF	Sensory: (-)		
N _{start} = 48	C2: VR (Wii)	Upper Extremity: (-)		
N _{end} = 40	Duration: 50min, 2x/wk, 2mo	Lower Extremity: (-)		
TPS= Chronic		Balance: (-)		
	Multiuser versus	single user VR		
Thielbar et al. (2020)	E: Multi user VR	Fugl Meyer Assessment Upper Extremity: (-)		
crossover	C: Single user VR			
RCT (4)	Duration: 4hrs, 4/wk, 2wks/condition	lition		
N _{start} =21				
N _{end} =20				
TPS=Chronic				
All and the state of the state		LL baura, Min. minutas, DCT randomized controlled trial, TDC time		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Virtual Reality

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Virtual reality may not have a difference in efficacy when compared to conventional care for improving motor function.	39	Laffont et al. 2020; Henrique et al. 2019; Hung et al. 2019; Norouzi-Gheidari et al. 2019; Norouzi-Gheidari et al. 2019; Asfar et al. 2019; Oh et al. 2019; Asfar et al. 2018; Kishin et al. 2018; Faria et al. 2018; Kim et al. 2018; Faria et al. 2018; Lee et al. 2017; Rand et al. 2017; Ballester et al. 2017; Rand et al. 2017; Stockley et al. 2017; Turkbey et al. 2017; Choi et al. 2017; Stockley et al. 2017; Turkbey et al. 2016; Kong et al. 2016; Choi et al. 2016; Givon et al. 2016; Choi et al. 2016; Eve et al. 2016; Da Silva Riberio et al. 2015; Da Silva Riberio et al. 2014; Thielbar et al. 2014; Thielbar et al. 2014; Thielbar et al. 2014; Choi et al. 2014; Shin et al. 2014; Thielbar et al. 2014; Duff et al. 2013; Lee et al. 2014; Crosbie et al. 2012; Da Silva et al. 2011; Kiper et al. 2011; Piron et al. 2010; Saposnik et al. 2010; Yavuzer et al. 2008; Jang et al. 2005;
1b	Virtual reality bilateral arm training may produce greater improvements in motor function than bilateral arm training.	1	Lee et al. 2016b
1b	Virtual reality interventions combined with FES may not have a difference in efficacy when compared to FES alone for improving motor function.	1	Lee et al. 2018

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

 $^{+\}exp_2$ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

	Virtual reality interventions on their come or		Lee and Chun, 2014
415	Virtual reality interventions on their own or		Lee and Onan, 2014
1b	combined with cathodal tDCS may produce greater	1	
	improvements in motor function than cathodal tDCS.		
	Virtual reality training with a hand orthosis may not		Nijenhuis et al. 2017
1b	have a difference in efficacy when compared to	1	
	conventional therapy for improving motor function.		
	Virtual reality training may not have a difference in		McNulty et al. 2015
1b	efficacy when compared to mCIMT for improving motor	1	
	function.		
	Asymmetric virtual reality training may produce		Lee at al. 2014
2	greater improvements in motor function than	1	
_	symmetric conventional training.		
	Virtual reality training may produce greater		Jang at al. 2005
2	improvements in motor function than no training.	1	
	'		
	Virtual reality with mirror therapy may produce		Choi et al 2019
1b	greater improvements in motor function than mirror	1	
	therapy alone.		
	Virtual reality training with peripheral nerve		Dos Santos et al.
415	facilitation may not have a difference in efficacy when		2019
1b	compared to virtual reality or peripheral nerve	1	
	facilitation for improving motor function.		
	Multi-user virtual reality may not have a difference in		Thielbar et al. 2020
1b	efficacy when compared to single-user virtual reality	1	
110	for improving motor function.		
	recompleting motor randidin	l	

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Virtual reality interventions may produce greater improvements on measures of stroke severity than conventional therapy.	1	Kiper et al. 2018	

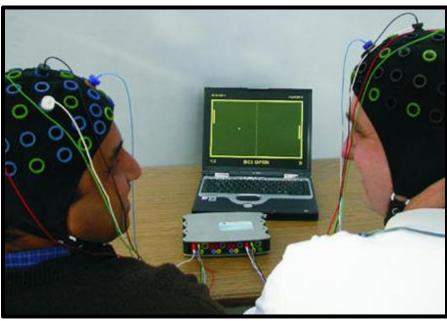
RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
2	There is conflicting evidence about the effect of virtual reality interventions to improve range of motion when compared to conventional therapy, recreational therapy or sham interventions.	2	Shin et al. 2014; Sin and Lee, 2013	
1b	Virtual reality training may not have a difference in efficacy when compared to mCIMT for improving range of motion.	1	McNulty et al. 2015	
2	Asymmetric virtual reality training may produce greater improvements in range of motion than symmetric conventional training.	1	Lee at al. 2014	

DEXTERITY			
LoE	Conclusion Statement	RCTs	References

1a	Virtual reality interventions may not have a difference in efficacy when compared to conventional therapy, recreational therapy or sham interventions for improving dexterity.	10	Laffont et al. 2020; Norouzi- Gheidari et al. 2019; Oh et al. 2019; Rodgers et al. 2019; Asfar et al. 2018; Askin et al. 2018; Kim et al. 2018; Brunner et al. 2017; Rand et al. 2017; Standen et al. 2017; Stockley et al. 2017; Turkbey et al. 2017; Lee et al. 2016a; Saposnik et al. 2016; Choi et al. 2014; Sin and Lee, 2013; Saposnik et al. 2010; Jang et al. 2005
1b	Virtual reality bilateral arm training may produce greater improvements in dexterity than bilateral arm training.	1	Lee et al. 2016b
1b	Virtual reality interventions combined with FES may not have a difference in efficacy when compared to FES alone for improving dexterity.	1	Lee et al. 2018
1b	Virtual reality interventions on their own or combined with cathodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving dexterity.	1	Lee and Chun, 2014
1b	Virtual reality training with a hand orthosis may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	1	Nijenhuis et al. 2017
1b	Virtual reality training may not have a difference in efficacy when compared to mCIMT for improving dexterity.	1	McNulty et al. 2015
2	Asymmetric virtual reality training may produce greater improvements in dexterity than symmetric conventional training.	1	Lee at al. 2014
2	Virtual reality training may produce greater improvements in dexterity than no training.	1	Jang at al. 2005

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	Virtual reality interventions may not have a difference in efficacy when compared to conventional therapy, recreational therapy or sham interventions for improving spasticity.	6	Oh et al. 2019; Askin et al. 2018; Faria et al. 2018; Ballester et al. 2017; Lee et al. 2013; Kiper et al. 2011
1b	Virtual reality interventions on their own or combined with cathodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving spasticity.	1	Lee and Chun, 2014
1b	Virtual reality training may not have a difference in efficacy when compared to mCIMT for improving spasticity.	1	McNulty et al. 2015
2	Asymmetric virtual reality training may not have a difference in efficacy when compared to symmetric conventional training for improving spasticity.	1	Lee at al. 2014

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	Virtual reality interventions may not have a difference in efficacy when compared to conventional therapy, recreational therapy or sham interventions for improving muscle strength.	12	Lin et al. 2020; Oh et al. 2019; Askin et al. 2018; Faria et al. 2018; Ballester et al. 2017; Standen et al. 2017; Choi et al. 2016; Givon et al. 2016; Saposnik et al. 2016; Choi et al. 2014; Shin et al. 2014; Lee et al. 2013; Crosbie et al. 2012; Da Silva et al. 2011; Saposnik et al. 2010
1b	Virtual reality bilateral arm training may produce greater improvements in muscle strength than bilateral arm training.	1	Lee et al. 2016b
1b	Virtual reality interventions on their own or combined with cathodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving muscle strength.	1	Lee and Chun, 2014
1b	Virtual reality training with a hand orthosis may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	1	Nijenhuis et al. 2017
2	Asymmetric virtual reality training may produce greater improvements in muscle strength than symmetric conventional training.	1	Lee at al. 2014


ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Virtual reality may not have a difference in efficacy when compared to conventional care for improving performance of activities of daily living.	32	Laffont et al. 2020; Lin et al. 2020; Hung et al. 2019; Norouzi-Gheidari et al. 2019; Ogun et al. 2019; Asfar et al. 2018; Faria et al. 2018; Kim et al. 2018; Faria et al. 2018; Adie et al. 2017; Brunner et al. 2017; Rand et al. 2017; Stockley et al. 2017; Rand et al. 2017; Stockley et al. 2017; Turkbey et al. 2017; Choi et al. 2016; Choi et al. 2016; Saposnik et al. 2016; Choi et al. 2016; Choi et al. 2016; Choi et al. 2014; Fan et al. 2014; Shin et al. 2014; Upuff et al. 2014; Shin et al. 2014; Duff et al. 2013; Lee et al. 2013; Da Siliva et al. 2011; Kiper et al. 2011; Kiper et al. 2011; Saposnik et al. 2010; Yavuzer et al. 2010; Yavuzer et al. 2010;
1b	Virtual reality interventions combined with FES may not have a difference in efficacy when compared to FES alone for improving performance of activities of daily living.	1	Lee et al. 2018
1b	Virtual reality interventions on their own or combined with cathodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving performance of activities of daily living.	1	Lee and Chun, 2014
1b	Virtual reality training with a hand orthosis may not have a difference in efficacy when compared to conventional therapy for improving performance of activities of daily living.	1	Nijenhuis et al. 2017

Virtual reality training may not have a difference in efficacy when compared to mCIMT for improving	1	McNulty et al. 2015
 performance of activities of daily living.		

Key points

Virtual therapy alone may not be more beneficial than conventional therapy for upper limb rehabilitation following stroke, however it may be beneficial for certain aspects of upper limb function when used in combination with conventional or other therapy approaches.

Brain Computer Interfaces

Adopted from: http://www.tech-fag.com/brain-computer-interface.html

Brain-computer interface (BCI) technology has only recently emerged as a potential rehabilitative treatment option following stroke. BCI records and decodes local brain activity during the performance of a motor movement (Van Dokkum et al. 2015). The decoded brain signals can be configured into visual, auditory or haptic feedback, and even for the control of external devices to help facilitate movement (Van Dokkum et al. 2015). BCI promotes the recruitment of brain areas involved in motor planning and execution and facilitates neural plasticity of neural networks using these areas, helping patients learn to generate normal brain activity or use brain activity to operate training devices (Van Dokkum et al. 2015). The evidence base for this intervention is still however in its infancy.

13 RCTs were inditified that examined brain computer interfaces for upper extremity motor rehabilitation poststroke.

One RCT examined a BCI combined with tDCS (Mane et al. 2019). One RCT examined a BCI combined with virtual reality (Lin et al. 2018). One RCT examined a BCI combined with motor imagery (Pichiorri et al. 2015). Three RCTs examined a BCI combined with FES (Young et al. 2016; Kim et al. 2016; Li et al. 2014). Six RCTs examined a BCI combined with robotics (Cheng et la. 2020; Wang et al. 2018; Ang et al. 2015; Curado et al. 2015; Ang et al. 2014; Ramos-Murguialday et al. 2013). One RCT compared a BCI with limb restraint or without (Mugler et al. 2019).

The methodological details and results of 13 RCTs evaluating BCI for the upper extremity motor rehabilitation in chronic stroke survivors are presented in Table 20.

Table 20. RCTs Evaluating Brain Computer Interfaces Interventions for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Size _{start}	frequency per week for total	Nesult (direction of effect)
	number of weeks	
Sample Sizeend	number of weeks	
Time post stroke category	501 11 1 11 1	
	BCI combined with tD	
Mane et al. (2019)	E: Brain-Computer Interface (BCI) +	Fugle-Meyers Assessment Upper Extremity: (-)
RCT (8)	tDCS (dual (anode ipsilateral) (20min)	
N _{start} = 19	C: BCI + sham	
N _{end} = 19	Duration: 1hr, 5d/wk, 2wks	
TPS= Chronic		
11 6- 6116116	BCI combined with Viruta	l Poslity
Lin et al. (2018)	E1: Motion tracking device+ VR game	E1 vs E2
RCT (6)	E2: Motion tracking device + brain-	Fugl-Meyer Assessment (exp2)
N _{Start} =15	computer interface attention-	E2 vs C
N _{End} =15	monitoring electroencephalogram	Fugl-Meyer Assessment (exp2)
TPS=Chronic	device + VR game	<u>E1 vs C</u>
	C: Conventional therapy	Fugl-Meyer Assessment (-)
	Duration: 35min/d, 3d/wk for 4wk	
	BCI combined with motor	imagery
Pichiorri et al. (2015)	E: Brain-computer interface + motor	Fugl Meyer Assessment: (+exp)
RCT (6)	imagery	Medical Research Council Scale: (+exp)
N _{start} =32	C: Motor imagery	National Institute of Health Stroke Scale: (+exp)
Nend=28	Duration: 30min, 3x/wk, 4wks	, (* [,
	Baration commit, ox mit, mite	
TPS=Subacute		
	BCI combined with	
Young et al. (2016)	E: Brain computer interface training +	Stroke Impact Scale (-)
RCT (5)	FES	Action Research Arm Test (-)
N _{Start} =19	C: No training	9 Hole Peg Test (-)
N _{End} =10	Duration: 120min/d for 9-15d	
TPS=Chronic		
Kim et al. (2016)	E: FES with Action observation	Fugl-Meyer Assessment (+exp)
RCT (7)	training and brain computer interface	Motor Activity Log (+exp)
N _{Start} =34	C: Conventional training	Modified Barthel Index (+exp)
Nend =30	Duration: 30min, 5d/wk for 4wk	Wrist Flexion (+exp)
TPS=Chronic	Duration. Somin, Su/wk for 4wk	Virist Flexion (T exp)
	F. Drain committee Interface (DCI)	Action December Arms Tests (cours)
<u>Li et al. (2014)</u>	E: Brain-computer Interface (BCI) +	Action Research Arm Test: (+exp)
RCT (6)	Functional Electrical Stimulation	Fugle-Meyers Assessment Upper Extremity: (-)
N _{start} = 15	(FES)	
N _{end} = 14	C: Conventional therapy + FES	
TPS= Subacute	Duration: 1-1.5hrs, 3x/wk, (rehab	
	5x/wk, 8wkS)	
	BCI Combined with Robotics ve	
Cheng et al. (2020)	E: EEG Motor Imagery Brain	Fugl Meyers Upper Extremity: (-)
RCT (6)	Computer Interface assisted Exo-	Action Research Arm Test: (-)
N _{start} = 11	glove	`'
N _{end} = 10	C: Robot exo-glove only	
TPS= Chronic	Duration: 30min standard, 90min,	
	3x/wk, 6wks	
Wang et al. (2018)	E: Action observation with EEG	Fugl Meyer Assessment Upper Extremity: (-)
RCT (6)	guided robot (hand exo)	. ag. mayor / socoomonic appor Extramity. (*)
N _{start} =24	C: Robot (hand exo)	
Nstart=24 Nend=24		
	Duration: 20x, 3-5x/wk, 5-7wks	
TPS=Chronic	E. Dunin commutantint-st MIT	First Mayor Appears (* ()
Ang et al. (2015)	E: Brain computer interface + MIT-	Fugl-Meyer Assessment (-)
RCT (7)	Manus robotic training	
N _{Start} =26	C: MIT-Manus robotic training	

N _{End} =25 TPS=Chronic	Duration: 90min/d, 3d/wk for 4wk	
Curado et al. (2015) RCT (4) N _{start} = 32 N _{end} = Not reported TPS= Chronic	E: Brain Machine Interface + robotic orthosis C: Sham + robot Duration: 1hr, 5x/wk for 4wks	EMG facilitation (-)
Ang et al. (2014) RCT (8) N _{Start} =22 N _{End} =21 TPS=Chronic	E1: Brain-computer interface + haptic knob (HK) robot E2: HK robot C: Standard Arm Therapy (SAT) Duration: 90min/d, 3d/wk for 6wk	E1 vs C Fugl-Meyer Assessment (-) E2 vs C Fugl-Meyer Assessment (-) E1 vs E2 Fugl-Meyer Assessment (-)
Ramos-Murguialday et al. (2013) RCT (8) N _{Start} =32 N _{End} =30 TPS=Chronic	E: Brain machine interface (BMI) + arm and hand orthosis C: Sham BMI Duration: 5d/wk for 4wk	Fugl Meyer Assessment (+exp) Motor Activity Log (-) Ashworth Scale (-)
	BCI with limb restraint	or not
Mugler et al. (2019) RCT (6) Nstart= 35 Nend= 32 TPS= Chronic	E: Isometric myoelectric computer interface (60 or 90) C: Non-restrained myoelectric computer Interface (90) Duration: 60 or 90 min 3x/wk, for	 Fugl-Meyers Assessment Upper Extremity: (-) Wolf Motor Function Test - Time: (-) Motor Activity Log Amount of Use: (-) Quality of Movement: (-)
	6wks	Modified Ashworth Scale: (-) hours, Min. minutes: PCT_condomized controlled trial: TRS_time

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

+exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

Conclusions about Brain Computer Interfaces

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Brain computer interface combined with tDCS may not have a difference in efficacy compared to BCI alone for improving motor function.	1	Mane et al. 2019
1b	Brain computer interfaces combined with virtual reality may produce greater improvements in motor function than virtual reality alone or conventional care.	1	Lin et al. 2018
1b	Brain computer interfaces combined motor imagery may produce greater improvements in motor function than motor imagery alone.	1	Pichiorri et al.2015
There is conflicting evidence about the effect of brain computer interface combined with FES to improve motor function when compared to conventional care or FES		3	Kim et al. 2016; Young et al 2016; Li et al. 2014
1a	Brain computer interfaces combined with robotics may not have a difference in efficacy compared to robotics alone for improving motor function.	4	Cheng et al. 2020; Ang et al. 2015; Ang et al. 2014; Ramos-

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

			Murguialday et al. 2013
1b	Brain computer interfaces with limb restraint may not have a difference in efficacy compared to brain computer interfaces without limb restraint for improving motor function.	1	Mugler et al. 2019

DEXTERITY				
LoE	LoE Conclusion Statement RCTs References			
2	Brain computer interface combined with FES may not have a difference in efficacy compared to conventional care or FES for improving dexterity.	1	Young et al. 2016	

SPASTICITY			
LoE	LoE Conclusion Statement		References
1b	Brain computer interfaces combined with robotics may not have a difference in efficacy compared to robotics alone for improving spasticity.	1	Ramos-Murguialday et al. 2013
1b	Brain computer interfaces with limb restraint may not have a difference in efficacy compared to brain computer interfaces without limb restraint for improving spasticity.	1	Mugler et al. 2019

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1b	Brain computer interfaces combined with FES may produce greater improvements in range of motion than conventional care of FES.	1	Kim et al. 2016

ACTIVITIES OF DAILY LIVING			
LoE	LoE Conclusion Statement		References
1b	There is conflicting evidence about the effect of brain computer interface combined with FES to improve performance on activities of daily living when compared to conventional care or FES	2	Kim et al. 2016; Young et al 2016
1b	Brain computer interfaces combined with robotics may not have a difference in efficacy compared to robotics alone for improving activities of daily living.	1	Ramos-Murguialday et al. 2013
1b	Brain computer interfaces with limb restraint may not have a difference in efficacy compared to brain computer interfaces without limb restraint for improving performance on activities of daily living.	1	Mugler et al. 2019

STROKE SEVERITY

LoE	Conclusion Statement	RCTs	References
1b	Brain computer interfaces combined motor imagery may produce greater improvements in outcomes of stroke severity than motor imagery alone.	1	Pichiorri et al.2015

	MUSCLE STRENGTH				
LoE	LoE Conclusion Statement RCTs Referen				
1b	Brain computer interfaces combined motor imagery may produce greater improvements in muscle strength than motor imagery alone.	1	Pichiorri et al.2015		

Key points

The literature is mixed regarding brain-computer interface technology for upper limb motor rehabilitation following stroke, either on its own or combined with other therapies, but it may not be beneficial alone for other aspects of upper limb function.

EMG Biofeedback

Adopted from: http://www.udbhavphysiotherapy.com/services/emg-biofeedback/10

EMG biofeedback for the treatment of hemiparesis after stroke is performed through the application of electrodes onto specific muscle groups important for a desired motor movement to monitor electrical activity during muscle contraction (Nelson, 2007). It then provides feedback of muscle activity back to the patient by conversion of myoelectrical activity into visual and/or auditory information to increase patient awareness and facilitate motor movement (Sturma et al. 2018). EMG biofeedback is particularly useful for small muscle contractions that are otherwise unnoticeable kinaesthetically or visually in the earlier stages of stroke recovery or in cases of severe paresis (Nelson, 2007)

17 RCTs were inditified that examined EMG biofeedback for upper extremity motor rehabilitation poststroke.

15 RCTs were found comparing EMG-biofeedback to sham or conventional therapy (Kim et al. 2017; Garrido-Montenegro et al. 2016; Rayegani et al. 2014; Dogan-Aslan et al. 2012; Amagan et al. 2003; Wolf et al. 1994; Crow et al. 1989; Basmajian et al. 1987; Inglis et al. 2984; Basmajian et al. 1982; Prevo et al. 1982; Greenberg & Fowler, 1980; Hurd et al. 1980; Mroczek et al. 1978; Lee et al. 1976). Two RCTs examined EMG-biofeedback combined with an additional intervention (Cordo et al. 2013; Hemmen & Seelen, 2007).

The methodological details and results of 17 RCTs evaluating EMG biofeedback for the upper extremity motor rehabilitation are presented in Table 21.

Table 21. RCTs Evaluating EMG Biofeedback Interventions for Upper Extremity Motor Rehabilitation

Reliabilitation		
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Kim et al. (2017) RCT (2) N _{Start} =30 N _{End} =30 TPS=Chronic	E: EMG Biofeedback and Conventional Therapy C: Conventional Therapy	 Fugl-Meyer Assessment (-) Manual Function Test (-) Functional Independence Measure (-)
Garrido-Montenegro et al. (2016) RCT (8) N _{Start} =14 N _{End} =14 TPS=Chronic	E: EMG/Biofeedback + conventional occupational therapy C: Occupational therapy Duration: 1 hr/d, 4d/wk for 4wk	 Barthel Index (+exp) Instrumental Activities of Daily Living (+exp) Action Research Arm Test (+exp) Motor Activity Log (+exp)
Rayegani et al. (2014) RCT (5) N _{Start} =46 N _{End} =30 TPS=Chronic	E: OT + EMG + biofeedback E2: OT + neurofeedback C: OT Duration: 40 min/d, 5d/wk for 2wk	Jebsen Taylor Hand Test (-)
Doğan-Aslan et al. (2012) RCT (5) N _{start} = 61 N _{end} = 40 TPS= Subacute/Chronic	E: Electromyographic feedback C: Conventional therapy Duration: 20min, 5x/wk, 3wks	 Upper Extremity Function Test: (-) Fugl-Meyer Scale - wrist and hand subsections (+exp) Wrist Extension-Active Range of Motion: (-) Barthel Index: (+exp) Brunstromm stage: (+exp) Modified Ashworth Scale: (+exp)
Armagan et al.(2003) RCT (7) N _{start} =27 N _{end} =27 TPS=Subacute	E: EMG/Biofeedback Therapy C: Sham EMG/biofeedback Duration: 45 min/d, 2d/wk for 5wk	 Active range of motion (+exp) Changes in EMG surface potentials (+exp) Brunnstrom stages (-) Complex movement (-)
Wolf et al. (1994) RCT (6) N _{start} =16 N _{end} =16 TPS=Chronic	E: EMG biofeedback C: Conventional Therapy Duration: 25min, 10x over 6wks, 2- 4/wk	Active Range of Motion: (-) Passive Range of Motion: (-) Reaching task: (-)
Crow et al. (1989) RCT (8) N _{start} =40 N _{end} =40 TPS=Subacute	E: EMG/Biofeedback Therapy C: Sham EMG/biofeedback Duration: <i>Not Specified</i>	Action Research Arm test (+exp)
Basmajian et al. (1987) RCT (6) N _{start} =30 N _{end} =29 TPS=Chronic	E: EMG/Biofeedback Therapy C: Physical Therapy using neuro- facilitatory Duration: Not Specified	Upper extremity function test (-) Finger Oscillation test (-)
Inglis et al. (1984) RCT (5) N _{start} =30 N _{end} =30 TPS=Chronic	E: EMG/Biofeedback+ physiotherapy C: Physiotherapy Duration: Not Specified	Active range of motion (+exp) Brunnstrom (+exp) Muscle strength (+exp)
Basmajian et al.(1982) RCT (6) N _{start} =37 N _{end} =37 TPS=Chronic	E: EMG/Biofeedback Therapy C: Physical Therapy using neuro- physiological approach Duration: Not Specified	 Upper extremity function test (-) Min rate of manipulation test (-) 9-hole peg test (-)

Prevo et al. (1982) RCT (3) Nstart=28	E: EMG/Biofeedback Therapy C: Conventional Therapy Duration: 30 min/d, 2d/wk for 6wk	Proximal and distal agonists (-)
N _{end} =18 TPS=Subacute	·	
Greenberg & Fowler (1980) RCT (5) N _{start} =20 N _{end} =20 TPS=Acute	E: EMG/Biofeedback Therapy C: Conventional Occupational Therapy Duration: Not Specified	Active elbow extension (-)
Hurd et al. (1980) RCT (6) N _{start} =24 N _{end} =24 TPS=Chronic	E: Actual myofeedback C: Simulated myofeedback Duration: Not Specified	Active range of motion (-) Muscle activity (-)
Mroczek et al. (1978) RCT (5) N _{start} =9 N _{end} =9 TPS=Chronic	E: EMG biofeedback C: Physical therapy Duration: Not Specified	Range of Motion (-)
Lee et al. (1976) RCT (4) N _{start} =18 N _{end} =18 TPS=Acute	E1: True myofeedback E2: Placebo myofeedback C: No myofeedback with conventional training. Duration: Not Specified	Peak amplitude (-)
	EMG biofeedback combined with ad-	ditional interventions
Cordo et al. (2013) RCT (6) N _{Start} =46 N _{End} =43 TPS=Chronic	E1: AMES robot + torque biofeedback E2: AMES robot + EMG biofeedback Duration: 30 min/d, 3d/wk for 10 wk	 Fugl Meyer Score (-) Flexion torque strength (+exp) Extension strength (-) Box and Block Test (-) Stroke Impact Scale (-)
Hemmen & Seelen (2007) RCT (7) N _{start} =27 N _{end} =27 TPS=Subacute	E: EMG biofeedback + mental practice C: Conventional electrostimulation Duration: 30 min/d, 5d/wk for 3 mo	Fugl-Meyer Score (-) Action Research Arm test (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about EMG Biofeedback

MOTOR FUNCTION			
LoE	LoE Conclusion Statement		References
1a	EMG biofeedback may not have a difference in efficacy when compared to sham feedback or conventional therapy for improving motor function.	9	Thielbar et al. 2017; Kim et al. 2017; Garrido- Montenegro et al. 2016; Rayegani et al. 2014; Dogan-Aslan et al. 2012; Wolf et al. 2994; Crow et al. 1989; Basmajian et al. 1987; Basmajian et al.
1b	EMG biofeedback combined with arm robotics may not have a difference in efficacy when compared to torque biofeedback combined with arm robotics for improving motor function.	1	Cordo et al. 2013

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

1b EMG biofeedback combined with mental practice may not have a difference in efficacy when compared to conventional electrostimulation for improving motor function. Hemmen and Seelen, 2007

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1b	EMG biofeedback may not have a difference in efficacy when compared to sham feedback or conventional therapy for improving dexterity.	1	Basmajian et al. 1982
1b	EMG biofeedback combined with arm robotics may not have a difference in efficacy when compared to torque biofeedback combined with arm robotics for improving dexterity.	1	Cordo et al. 2013

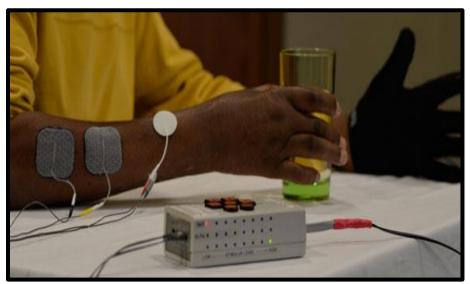
SPASTICITY			
LoE	Conclusion Statement	RCTs	References
2	EMG biofeedback may not have a difference in efficacy compared to sham feedback or conventional therapy for improving spasticity.	3	Dogan-Aslan et al. 2012; Prevo et al.1982; Greenberg and Fowler, 1980

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1a	EMG biofeedback may not have a difference in efficacy when compared to sham feedback or conventional therapy for improving range of motion.	7	Dogan-Aslan et al. 2012; Armagan et al. 2003; Wolf et al. 1994; Inglis et al. 1984; Greenberg and Fowler, 1980; Hurd et al. 1980; Mroczek et al. 1978

STROKE SEVERITY			
LoE	Conclusion Statement	RCTs	References
1b	There is conflicting evidence about the effect of EMG biofeedback to improve performance on measures of stroke severity when compared to sham feedback or conventional therapy.	2	Armagan et al. 2003; Inglis et al. 1984

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement RCTs References		
1a	EMG biofeedback may produce greater improvements in performance of activities of daily living than sham feedback or conventional therapy.	4	Kim et al. 2017; Thielbar et a. 2017; Garrido-Montenegro et al. 2016; Dogan- Aslan et al. 2012
1b	EMG biofeedback combined with arm robotics may not have a difference in efficacy when compared to	1	Cordo et al. 2013

torque biofeedback combined with arm robotics to	
improve performance of activities of daily living.	


MUSCLE STRENGTH				
LoE	LoE Conclusion Statement RCTs			
1b	There is conflicting evidence about the effect of EMG biofeedback to improve muscle strength when compared to sham feedback or conventional therapy.	2	Thielbar et al. 2017; Inglis et al. 1984	
1b	There is conflicting evidence about the effect of torque biofeedback combined with arm robotics to improve muscle strength when compared to EMG biofeedback combined with arm robotics.	1	Cordo et al. 2013	

Key points

EMG biofeedback either alone or in combination with other therapies, may not be beneficial for upper limb rehabilitation following stroke.

Sensorimotor stimulation

Neuromuscular Electrical Stimulation (NMES)

Adopted from: http://fescenter.org/patient-resources/current-clinical-trials/stroke-programs/hand-function-control-2/hand-function-control

Neuromuscular electrical stimulation (NMES) is a technique used to generate muscle contractions in regions affected by hemiparesis by stimulating lower motor neurons involved in muscle movement through transcutaneous application of electrical currents (Monte-Silva et al. 2019; Allen & Goodman 2014). Three forms of NMES are available:

- 1. Cyclic NMES in which a muscle is repetitively stimulated at near maximum contraction on a pre-set schedule and patient participation is passive (Nascimento et al. 2013);
- 2. Electromyography (EMG) triggered NMES, a target muscle is directly controlled or triggered by volitional EMG activity from the target or a different muscle to elicit a desired stimulation (Monte-Silva at al. 2019);
- 3. Functional electrical stimulation (FES), which refers to the application of NMES to assist voluntary during a functional task (Eraifej et al. 2017).

A total of 83 unique RCTs were found for using NMES to enhance upper extremity motor rehabilitation.

Interventions in eight RCTs were cyclic NMES compared to sham stimulation or conventional rehabilitation (Tilkici et al. 2017; Baygutalp et al. 2014; De Jong et al. 2013; Malhotra et al. 2013; Sahin et al. 2012; Lin and Yan, 2011; Mann et al. 2005; Powell et al. 1999; Chae et al. 1998; King et al. 1996; Faghri et al. 1994).

Three RCTs looked at NMES and stretching compared to these interentions alone (De jong et al. 2013; Sahin et al. 2012; King et al. 1996)

Four RCTs also looked at the combination of cyclic NMES with: robotics (Barker et al. 2017; Miyasaka et al. 2016; Lee et al. 2015; Hayward et al. 2013), and one with repetitive task training (Gharib et al. 2014).

12 RCTs looked at EMG-triggered NMES to sham stimulation or conventional rehabilitation (Kirac-Unal et al. 2019; Kwakkel et al. 2016; Dorsch et al. 2014; Shin et al. 2008; Bhatt et al. 2007; Gabr et al. 2005; Kimberley et al. 2004; Cauraugh and Kim, 2003; Cauraugh et al. 2000; Francisco et al. 1998; Heckman et al. 1997; Bowman et al. 1979).

Three RCTs looked at the combination of EMG-triggered NMES with: robotics (et al. (Qian et al. 2017; Hu et al. 2015; Barker et al. 2008), two RCTs looked at mirror therapy (Schick et al. 2017; Kojima et al. 2014), or one at a splint (Shindo et al. 2011).

14 RCTs looked at the effects of FES compared to sham stimulation or conventional rehabilitation (Demir et al. 2018; Pan et al. 2018; Carda et al. 2017; Marquez-Chin et al. 2017; Yuzer et al. 2017; Shimodozono et al. 2014; Karakus et al. 2013; Mangold et al. 2009; Hara et al. 2008; Thrasher et al. 2008; Hara et al. 2006; Ring and Rosenthal, 2005; Popovic et al. 2003; Faghri and Rodgers, 1997).

Ten RCTs looked at the combination of FES with: robotics (Daly et al. 2019), cycling Fes (Karaahmet et al. 2019), physical therapy (Khan et al. 2019) mirror therapy (Mathieson et al. 2018; Kim et al. 2015), botulinum toxin (Weber et al. 2010), action observation paired with brain computer interface (Kim et al. 2016), bilateral arm training (Chan et al. 2009), and task-oriented therapy (Jonsdottir et al. 2017; Alon et al. 2007).

Fourteen RCTs looked at the effect of different NMES techniques compared to each other (Knutson et al. 2019; Zheng et al. 2019; Cunning ham et al. 2018; Jeon et al. 2017; Knutson et al. 2016; Wilson et al. 2016; Boyaci et al. 2013; You et al. 2013; Knutson et al. 2012; Chae et al. 2009; De Kroon and Ijzerman, 2008; Hemmen and Seelen, 2007; Cauruahg et al. 2005; Cauruahg et al. 2003)

Three RCTs looked at differing intensity of NMES (Page et al. 2012; Hsu et al. 2010; Kowalczewski et al. 2007), high versus low frequency cyclic NMES (Doucet and Griffin, 2013), and early versus delayed FES (Popovic et al. 2004).

One study looked at NMES combined with thermal stimulation (Chen et al. 2019), bilateral arm training (Cauruagh et al. 2011), mental practice (Park et al. 2019). One study looked at cNMES comared to EMG bridging (Zhou et al. 2017)

Two studies examined the combination of FES and brain computer interface (Young et al. 2016; Li et al. 2014).

The methodological details and results of all 67 RCTs are presented in table 22.

Authors (Year) Study Design (PEDro Score)	Interventions Duration: Session length, frequency per	Outcome Measures Result (direction of effect)
Sample Size _{start} Sample Size _{end} Time post stroke category	week for total number of weeks	
Time post stroke category	Cyclic NMES versus convent	tional therapy
Tilkici et al. (2017) RCT (6) N _{Start} =40 N _{End} =40 TPS=Chronic	E: Neuromuscular Electrical Stimulation C: Conventional Therapy Duration: 30min/d, 5d/wk for 3wk	Modified Ashworth Scale (+exp) Wrist Extension (+exp) Brunnstrom's Recovery Stages (-) Modified Ashworth Scale (-) Fugl-Meyer Assessment (-) Duruoz Hand Index (-) Functional Independence Measure (-)
Baygutalp et al. (2014) RCT (5) N _{Start} =30 N _{End} =30 TPS=Chronic	E: NMES + conventional therapy C: Conventional therapy Duration: 60min/d, 5d/wk for 3wk	Modified Ashworth Scale (-) Barthel Index (-) Brunnstrom's Recovery Stages (-)
Malhotra et al. (2013) RCT (5) N _{Start} =90 N _{End} =65 TPS=Acute	E: NMES C: Conventional therapy Duration: 30 min (2x/d), 5d/wk for 6 wk	Passive Range of Motion (-)
<u>Lin & Yan (2011)</u> RCT (6) N _{stat} =46 N _{end} =37 TPS=Acute	E: Cyclic NMES + standard rehabilitation C: Standard rehabilitation Duration: 30 min/d, 5d/wk for 3 wk	Fugl-Meyer Assessment (+exp) Barthel Index (+exp)
Mann et al. (2005) 5 (RCT) N _{start} =22 N _{end} =22 TPS=Chronic	E: Neuromuscular Electrical Stimulation C: Passive Extension Exercises Duration: 10-30min (2x per day) for 12wk	Action Research Arm Test (+exp)
Powell et al. (1999) RCT (7) N _{start} =60 N _{end} =48 TPS=Subacute	E: Cyclic electrical stimulation + standard rehabilitation C: Standard rehabilitation Duration: 30 min (3x per day), 3d/wk for 8 wk	Action Research Arm test (+exp)
Chae et al. (1998) RCT (6) N _{start} =46 N _{end} =28 TPS=Subacute	E: Cyclic NMES C: Sham stimulation + routine rehabilitation Duration: 1 hr/d, 5d/wk for 3 wk	Fugl-Meyer Assessment (+exp)
Faghri et al. (1994) RCT (4) N _{start} =26 N _{end} =NR TPS=NR	E: Cyclic NMES + conventional therapy C: Conventional Therapy Duration: 1.5-6h/d for 6wk	Arm tone (+exp)
	and NMES combined with stretching vers	us stretching alone or sham
<u>De Jong et al. (2013)</u> RCT (8) N _{start} =46 N _{end} =46 TPS=Subacute	E: Arm stretch positioning + NMES C: Sham stretch positioning + Sham NMES Duration: 45 min (2x/d), 5d/wk, for 8 wk	Modified Ashworth Scale (-)
Sahin et al. (2012) RCT (5) N _{start} =42 N _{end} =38	E: Stretching + NMES C: Stretching Duration: 5d/wk for 4wk	Modified Ashworth Scale (+exp)

TPS=Chronic		
King et al. (1996) RCT (4) N _{start} =21 N _{end} =NR TPS=Chronic	E: NMES C: Passive stretch Duration: Not reported	Tone reduction (+exp)
	Cyclic NMES combined with	robotics
Barker et al. (2017) RCT (7) N _{Start} =50 N _{End} =38 TPS=Subacute	E1: SMART Arm Training + Outcome- Triggered Electrical Stimulation + Conventional Therapy E2: SMART Arm Training + Conventional Therapy C: Conventional Therapy Duration: 60min/d, 5d/wk for 4wk	E1 vs E2 vs C Motor Assessment Scale (-) Modified Ashworth Scale (-) Triceps Strength (-)
Miyasaka et al. (2016) RCT (5) N _{Start} =30 N _{End} =30 TPS=Subacute	E: NMES + robotic training C: Robotic training Duration: 1 hr/d, 5d/wk for 2 wk	Fugl-Meyer Assessment (-) Range of Motion (-)
Lee et al. (2015) RCT (8) N _{Start} =39 N _{End} =39 TPS=Chronic	E: NMES + robotic therapy C: Sham NMES + robotic therapy Duration: 90-100min/d, 5d/wk for 4wk	Modified Ashworth Scale (+exp) Wolf Motor Function Test (+exp) Stroke Impairment Scale (+exp) Fugl-Meyer Assessment (-) Motor Activity Log (-)
Hayward et al. (2013) RCT (6) Nstart=8 Nend=8 TPS=Acute	E: SensoriMotor Active Rehabilitation Training (SMART) with outcome trigger electrical stimulation (OT-stim) C: SensoriMotor Active Rehabilitation Training (SMART) Duration: 1 hr/d, 5d/wk for 4 wk	Motor Assessment Scale (-) Upper Arm Function (-)
	Cyclic NMES with repetitive t	ask training
Gharib et al. (2014) RCT (9) N _{Start} =40 N _{End} =40 TPS=Chronic	E: Cyclic NMES (20Hz) + repetitive task training C: Sham electrical stimulation + repetitive task practice Duration: 1 hr/d, 4d/wk for 8 wk	Modified Ashworth Scale (+exp) Jebsen Taylor Hand Function Test (+exp) Range of Motion (+exp)
	EMG-triggered NMES compared to	sham stimulation
Kirac-Unal et al. (2019) RCT (7) Nstart= 27 Nend= 23 TPS= Acute/Subacute	E: Task oriented EMG-triggered ES therapy (Nu-Tek Maxi plus 2 Dual Channel EMG ETS device) with conventional physical therapy C: Conventional therapy Duration: 1 hr 15 min/session (exp) 1 hr/ session (con). 5x/wk for 4 wk for 3 months.	Action Research Arm Test: Grasp: (+exp) Grip: (+exp) Finch: (+exp) Gross movement: (-) Functional Independence Measure: (-) Brunnstrom Recovery Stages Upper Extremity: (-) Hand: (+exp) Grip Strength: (+exp) Stroke Impact Scale Strength: (-) Activities of Daily Living: (-) Hand Function: (-)
Kwakkel et al. (2016) RCT (7) N _{Start} =159 N _{End} =159 TPS=Acute	E1: EMG-NMES (unfavourable prognosis) E2: Modified constraint-induced movement therapy (favourable prognosis) C1: Unfavourable prognosis based on preservation or return of voluntary finger extension early after stroke (received usual care) C2: Favourable prognosis based on preservation or return of voluntary finger	E1 vs C1 Action Research Arm Test: (-) Fugl-Meyer Assessment: (-) Motricity Index: (-) Stroke Impact Scale: (-) Wolf Motor Function Test: (-) Motor Activity Log: (-) E2 vs C2 Action Research Arm Test: (+exp ₂)

Dorsch et al. (2014)	extension early after stroke (received usual care) Duration: 1 hr/d, 3d/wk for 3 wk E: EMG-triggered NMES	Fugl-Meyer Assessment: (-) Motricity Index: (-) Stroke Impact Scale: (+exp ₂) Wolf Motor Function Test: (-) Motor Activity Log: (-) Modified Ashworth Scale (-)		
RCT (7) N _{Start} =33 N _{End} =30 TPS=Acute	C: Usual therapy Duration: 30 min/d, 6d/wk for 8wk	Manual Muscle Test (-)		
Shin et al. (2008) RCT (4) N _{start} = 14 N _{end} = 14 TPS= Chronic	E: EMG-NMES C: Conventional control Duration: 30min, 5x/wk, 10wks	 Box and Block Test (+exp) Strength (+exp) Accuracy (+exp) Delay in onset and offset (+exp, +exp) 		
Bhatt et al. (2007) RCT (3) N _{start} =20 N _{end} =18 TPS=Chronic	E1: EMG-triggered NMES E2: Tracking training E3: EMG-triggered NMES + tracking training Duration: 1 hr/d, 5d/wk, for 2 wk	 E1 vs E2 vs E3 Jebson Taylor Hand Function Test (-) Box & Block Test (-) 		
Gabr et al. (2005) RCT (4) N _{start} =12 N _{end} =12 TPS=Chronic	E: EMG-triggered NMES C: Home exercise Duration: 45 min/d, 3d/wk for 4 wk	Fugl Meyer Score (+exp) Action Research Arm Test (-)		
Kimberley et al. (2004) RCT (7) N _{start} =16 N _{end} = 16 TPS=Chronic	E: EMG-triggered NMES C: Sham Duration: 3hr/d, 5d/wk for 3 wk	Box & Block test (+exp) Motor Activity Log (+exp) Jebsen Taylor Hand Function Test (+exp)		
Cauraugh and Kim (2003) RCT (5) N _{start} =34 N _{end} =31 TPS=Chronic	E1: EMG-triggered NMES + blocked practice E2: EMG-triggered NMES + random practice C: Conventional therapy Duration: 90 min/d, 2d/wk (24hr in between) for 2 wk	E1/E2 vs C Box and Block Test (+exp ₁ , +exp ₂) Sustained wrist/finger contraction (+exp ₁ , +exp ₂) E1 vs E2 Box and Block Test (-) Sustained wrist/finger contraction (-)		
Cauraugh et al. (2000) RCT (4) Nstart=11 Nend=11 TPS=Chronic	E: EMG-triggered NMES + passive range of motion + stretching exercises C: Passive range of motion + stretching exercises Duration: 30 min/d, 4d/wk, for 3 wk	Box and Block test (+exp) Motor Assessment scale (-) Fugl-Meyer upper extremity (-)		
Francisco et al. (1998) RCT (3) Nstart=9 Nend=9 TPS=Acute	E: EMG-triggered NMES + standard therapy C: Conventional Therapy Duration: 30 min (2x per day), 5d/wk for 4 wk	Fugl-Meyer Assessment (+exp) Functional Independence Measure (+exp)		
Heckman et al. (1997) RCT(4) N _{start} =28 N _{end} =28 TPS=Subacute	E: EMG-triggered ES + standard therapy C: Standard therapy Duration: 5d/wk for 4wk	Hand extension (+exp) Muscle tone (+exp)		
Bowman et al. (1979) RCT (3) Nstart=30 Nend=NR TPS=NR	E: Conventional therapy + positional feedback electrical stimulation therapy C: Conventional Therapy Duration: 30min (2x per day), 5d/wk for 4wk	Range of motion (+exp)		
EMG-triggered NMES combined with robotics				

Qian et al. (2017)	E: Electromyography-Driven	Fugl-Meyer Assessment (+exp)
RCT (6)	Neuromuscular Electrical Stimulation-	Modified Ashworth Scale (+exp)
N _{Start} =24	Robot Arm	Action Research Arm Test (-)
Clark		
N _{End} =24	C: Conventional Therapy	Functional Independence Measure (-)
TPS=Acute-Subacute	Duration: 40min, 5d/wk for 4wk	
Hu et al. (2015)	E: EMG-driven NMES robot	Fugl-Meyer Assessment (+exp)
RCT (6)	C: EMG-driven robot	Action Research Arm Test (+exp)
N _{Start} =26	Duration: 30 min/d, 4d/wk for 5 wk	Modified Ashworth Scale (-)
N _{End} =26	Daration: 00 min/a, 1a/wk for 0 wk	i Modified / fortworth Codio ()
TPS=Chronic		
Barker et al. (2008)	E1: SMART Arm + EMG-triggered NMES	E1/E2 vs C
RCT (7)	E2: SMART Arm	Modified Ashworth Scale: (+exp ₁ , +exp ₂)
N _{start} =33	C: Conventional therapy	
N _{end} =30	Duration: 1 hr/d, 3d/wk for 4 wk	
TPS=Chronic		
TT C=CITICITIC	EMC triggored NMES with m	irror thorony
0 1: 1 (0017)	EMG-triggered NMES with m	
Schick et al. (2017)	E: Bilateral Electromyography-	Fugl-Meyer Assessment (-)
RCT (7)	Neuromuscular Electrical Stimulation with	Rivermead Assessment of Somatosensory
N _{Start} =33	Mirror Therapy	Performance (-)
N _{End} =32	C: Electromyography-Neuromuscular	Box and Block Test (-)
TPS=Subacute	Electrical Stimulation	Barthel Index (-)
	Duration: 30min/d, 5d/wk for 3wk	- Bartioi ilidox ()
		Food Marian Acces (1)
Kojima et al. (2014)	E: Mirror therapy + EMG-triggered NMES	Fugl-Meyer Assessment (+exp)
RCT crossover (7)	first	Hand range of Motion (+exp)
N _{Start} =13	C: Mirror therapy + EMG-triggered NMES	
N _{End} =13	delayed	
TPS=Subacute	Duration: 30 min/d, 4d/wk for 8 wk	
The Guadante	EMG-triggered NMES with	n enlint
011 1 1 (0011)		
Shindo et al. (2011)	E: EMG-triggered NMES + splint	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Splint	Motor Activity Log (-)
N _{start} =24	Duration: 45 min/d, 3d/wk for 3 wk	Action Research Arm Test (+exp)
N _{end} =20		
N _{end} =20 TPS=Subacute		
N _{end} =20 TPS=Subacute	FFS versus conventions	l therapy
TPS=Subacute	FES versus conventiona	
TPS=Subacute Demir et al. (2018)	E: Functional Electrical Stimulation and	Fugl-Meyer Assessment (-)
TPS=Subacute Demir et al. (2018) RCT (4)	E: Functional Electrical Stimulation and Conventional Physiotherapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart =29	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-)
TPS=Subacute Demir et al. (2018) RCT (4)	E: Functional Electrical Stimulation and Conventional Physiotherapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart =29	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute Yuzer at al. (2017)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Barthel Index (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute Yuzer at al. (2017) RCT (6)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Barthel Index (+exp) Brunnstrom Stages (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute Yuzer at al. (2017)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Barthel Index (+exp)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute Yuzer at al. (2017) RCT (6) Nstart = 30	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy C: Conventional Therapy C: Conventional Therapy	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Barthel Index (+exp) Brunnstrom Stages (-)
TPS=Subacute Demir et al. (2018) RCT (4) Nstart = 29 NEnd = 17 TPS=Chronic Pan et al. (2018) RCT (6) Nstart = 12 NEnd = 12 TPS=Subacute Carda et al. (2017) RCT-Crossover (7) Nstart = 11 NEnd = 11 TPS=Chronic Marquez-Chin et al. (2017) RCT (7) Secondary Analysis Nstart = 21 NEnd = 21 TPS=Subacute Yuzer at al. (2017) RCT (6)	E: Functional Electrical Stimulation and Conventional Physiotherapy C: Conventional Physiotherapy Duration: 15-45min (2x per day), 5d/wk for 8wks E: Fuinctional Electrical Stimulation C: Sham Electrical Stimulation Duration: 40min/d, 2d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 90min/d, 5d/wk for 2wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk E: Functional Electrical Stimulation C: Conventional Therapy Duration: 1h/d, 5d/wk for 8wk	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Motor Activity Log-28 (-) Jebsen-Taylor Hand Function Test (-) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (+exp) Motor Activity Log (+exp) Wolf Motor Function Test (-) Resistance to Passive Movement Scale (-) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Barthel Index (+exp) Brunnstrom Stages (-)

Shimodozono et al. (2014)	E1: Continuous NMES + repetitive	Fugl-Meyer Assessment (+exp ₂)
RCT (8)	facilitative exercise	Elbow extension (+exp ₂)
N _{Start} =27	E2 Repetitive facilitative exercise	Shoulder flexion (-)
N _{End} =24	C: Conventional therapy	Wrist flexion (-)
TPS= Subacute	Duration: 40 min/d, 5d/wk for 4 wk	
Karakus et al. (2013)	E: FES + standard rehabilitation	Brunnstrom recovery stages (+exp)
RCT (8)	C: Standard rehabilitation	Motricity Index (+exp)
N _{Start} =28		Modified Ashworth Scale (-)
	Duration: 30min/d, 5d/wk for 2wk	Infoditied Astiworth Scale (-)
N _{End} =28		
TPS= Subacute		
Mangold et al. (2009)	E: FES	Barthel Index (-)
RCT (5)	C: Conventional therapy	Chedoke McMaster Stroke Assessment (-)
N _{start} =23	Duration: 1 hr/d, 3d/wk for 4 wk	
N _{end} =23		
TPS=Subacute		
Hara et al. (2008)	E: FES	Range of motion (+exp)
RCT (5)	C: Conventional therapy	Modified Ashworth Scale (+exp)
N _{start} =20	Duration: 45 min/d, 6d/wk for 4 wk	modified / formertal education (1 exp)
Nend=20	Baraton: 10 mm/a, ca/mc101 mc	
TPS=Chronic		
	F. FFC L conventional thereas:	Dehabilitation Engineering Laboratory Hand
Thrasher et al. (2008)	E: FES + conventional therapy	Rehabilitation Engineering Laboratory Hand Trunction Tools (Laboratory Hand)
RCT (5)	C: Conventional therapy	Function Test (+exp)
N _{start} =21	Duration: 30 min/d, 4d/wk for 12 wk	
N _{end} =19		
TPS=Subacute		
Hara et al. (2006)	E: FES	Modified Ashworth Scale (-)
RCT (4)	C: Conventional therapy	Range of Motion (+exp)
N _{start} =14	Duration: 1 hr/d, 2d/wk for 4 mo	
N _{end} =14	11, 11	
TPS=Chronic		
Ring & Rosenthal (2005)	E: Neuroprosthetic FES	Modified Ashworth Scores (+exp)
RCT(6)	C: Conventional therapy	Box & Block test (+exp)
N _{start} =22	Duration: 25 min/d, 3d/wk for 5 wk	
Nend=NR	Duration. 25 min/d, 5d/wk for 5 wk	Jebsen Taylor Hand Function test (+exp)
TPS=Subacute		
Popovic et al. (2003)	E: FES	Upper extremity performance test (+exp)
RCT (6)	C: Standard therapy	
N _{start} =28	Duration: 30 min/d, 7d/wk for 3 wk	
N _{end} =28		
TPS=Subacute		
Faghri & Rodgers (1997)	E: FES + conventional therapy	Range of motion (+exp)
RCT (4)	C: Conventional therapy	Shoulder muscle tone (+exp)
N _{start} =26	Duration: 6 hr/d, 6d/wk for 6 wk	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
N _{end} =26	,	
TPS=Acute		
	FES Techniques vs Each	other
do Kroon et al. (2004)	T	
de Kroon et al. (2004)	E: Electrical stimulation of flexors and	Action Arm Research test: (-) Crim attraction (-)
RCT (6)	extensors	Grip strength hand ratio: (-)
N _{start} = 30	C: Electrical stimulation of extensors only	Motricity index: (-)
N _{end} = 27	Duration: 20-60min increased over time,	Ashworth Scale: (-)
TPS= Chronic	3x/d, 6wks	Active Range of Motion, Wrist: (-)
	FES combined with additiona	al therapies
Daly et al. (2019)	E1: Distal (wrist/hand Functional Electrical	E1 Vs C
RCT (5)	Stimulation)	Fugl Meyers Assessment Upper Extremity: (-)
N _{start} = 38	E2: Proximal (Shoulder/elbow) (Functional	Arm Motor Assessment Test
Nend= 31	Electrical Stimulation + inMotion robot)	
TPS= Chronic	C: Whole arm	• Time: (-)
5- 511151116	Duration: 1.5hrs, 5x/wk, 12wks	• Function (-)
	Daradon. 1.01110, 0A/WK, 12WK3	E2 Vs C
		Fugl Meyers Assessment Upper Extremity: (-)

		Arm Motor Assessment Test • Time: (-) • Function (-) E1 Vs E2 • Fugl Meyers Assessment Upper Extremity: (-) • Arm Motor Assessment Test • Time: (-)
Karaahmet et al. (2019) RCT (5) Nstart= 30 Nend= 21 TPS= Subacute	E: Cycling Functional electrical stimulation C: Conventional care Duration: Rehab 30min, 5x/wk for 4wks	Function (-) Acromiohumeral Distance: (-) Brunnstrom: (-) Fugle-Meyers Assessment Upper Extremity: (-) Frenchay Arm Test: (-) Functional Independence Measure: (-)
Khan et al. (2019) RCT (8) Nstart= 60 Nend= 60 TPS= Chronic	E: Theta Burst Stimulation (TBS) + Physical therapy (PT) E2: Functional Electrical Stimulation (FES) + Physical therapy (PT) C: Physical Therapy (PT) Duration: 4wks, 3x stimulation plus 5x physical therapy for 30min	E1 Vs C Fugle-Meyers Assessment: (+exp1) Modified Rankin Scale: (+exp1) Barthel Index: (+exp1) National Institute of Health Stroke Scale: (+exp1) E2 Vs C Fugle-Meyers Assessment: (+exp2) Modified Rankin Scale: (+exp2) Barthel Index: (+exp2) National Institute of Health Stroke Scale: (+exp2) E1 Vs E2 Fugle-Meyers Assessment: (-) Modified Rankin Scale: (-) Barthel Index: (-) Barthel Index: (-) National Institute of Health Stroke Scale: (-)
Mathieson et al. (2018) RCT (8) N _{Start} =50 N _{End} =47 TPS=Acute	E1: Functional Electrical Stimulation E2: Mirror Therapy E3: Functional Electrical Stimulation with Mirror Therapy Duration: 30min (2x per day), 5d/wk for 3wk	 E1 vs E2 Action Research Arm Test (+exp) Fugl-Meyer Assessment (+exp) Nottingham Extended Activities of Daily Living Test (- Functional Independence Measure (-)
Jonsdottir et al. (2017) RCT (5) N _{Start} = 82 N _{End} = 45 TPS=Subacute Kim et al. (2016)	E: Myoelectric Continuous Control of Functional Electrical Stimulation Task- Oriented Therapy C: Task Oriented Therapy Duration: 45min/d, 5d/wk for 5-6wk E: FES with Action observation training and	Action Research Arm Test (-) Fugl-Meyer Assessment (-) Disability of the Arm, Shoulder, and Hand Questionnaire (-) Fugl-Meyer Assessment (+exp)
RCT (7) N _{Start} =34 N _{End} =30 TPS=Chronic	brain computer interface C: Conventional training Duration: 30min, 5d/wk for 4wk	Motor Activity Log (+exp) Modified Barthel Index (+exp) Wrist Flexion (+exp)
Kim et al. (2015) RCT (5) Nstart=33 NEnd=29 TPS=Chronic	E1: FES with biofeedback + mirror therapy E2: FES + mirror therapy C: Conventional rehabilitation Duration: 30 min/d, 5d/wk for 4 wk	E1 vs C Functional Independence Measure (+exp) Jebsen Taylor Hand test (+exp) Manual Muscle Test (+exp) Box and Block Test (+exp) Wrist Extension (+exp) Grip strength (-) Modified Ashworth Scale (-) E1 vs E2 Functional Independence Measure (-) Jebsen Taylor Hand test (+exp) Manual Muscle Test (+exp) Box and Block Test (+exp) Wrist Extension (+exp) Grip strength (+exp)

		T
		Modified Ashworth Scale (-)
Weber et al. (2010) RCT (7) Nstart=23 Nend=23 TPS=Chronic	E: FES + botulinum toxin-A + home based exercise program C: Botulinum toxin-A + home-based exercise program Duration: 1 hr/d, 5d/wk for 4 wk	Motor Activity Log (-) Action Research Arm Test (-)
Chan et al. (2009) RCT (7) Nstart=20 Nend=20 TPS=Chronic	E: Bilateral arm training + FES C: Bilateral arm training + sham FES Duration: 70 min/d, 3d/wk for 5 wk	Fugl-Meyer Assessment (+exp) Functional test for the Hemiplegic Upper Extremity (+exp) Modified Ashworth Scale (-)
Alon et al. (2007) RCT (5) N _{start} =15 N _{end} =15 TPS=Subacute	E: FES + task specific training C: Task specific training Duration: 30 min(2x/d), 5d/wk for 12 wk	 Box and Block Test (+exp) Jebsen-Taylor light object lift (+exp) Fugl-Meyer Assessment (+exp)
	Electrical Stimulation techniques	versus each other
Knutson et al. (2020) RCT (5) Nstart= 67 Nend= 53 TPS= <2yr (chronic?)	E1: Arm + Hand Contralaterally Controlled Functional Electrical Stimulation (CCFES) E2: Hand CCFES E3: Arm + Hand cyclic neuromuscular electrical stimulation. Duration: i) A + H cNMES: 60 mins/session for 10 sessions ii) CCFES groups: 46 mins/session for 10 sessions +70 mins FTP for 2 FTP sessions = 10 hrs/wk for 12wks. 36 wks total (12wk therapy, 24 wk post-intervention)	E1 Vs C Box and Block Test: (-) Fugle-Meyers Assessment Upper Extremity: (+exp) Stroke Upper Limb Capacity Scale: (-) Reachable Workspace: (+exp1) E2 Vs C Box and Block Test: (-) Fugle-Meyers Assessment Upper Extremity: (-) Stroke Upper Limb Capacity Scale: (-) Arm Motors Abilities Test: (-) Reachable Workspace: (-) E3 Vs C Box and Block Test: (-) Fugle-Meyers Assessment Upper Extremity: (-) Stroke Upper Limb Capacity Scale: (-) Fugle-Meyers Assessment Upper Extremity: (-) Stroke Upper Limb Capacity Scale: (-) Arm Motors Abilities Test: (-) Reachable Workspace: (-) E1 Vs E2 Vs E3 Box and Block Test: (-) Fugle-Meyers Assessment Upper Extremity: (+exp1) Stroke Upper Limb Capacity Scale: (-) Fugle-Meyers Assessment Upper Extremity: (+exp1) Stroke Upper Limb Capacity Scale: (-) Arm Motors Abilities Test: (-) Reachable Workspace: (+exp1)
Zheng et al. (2019) RCT (5) Nstart=50 Nend=41 TPS=Acute	E: Functional Electrical Stimulation (FES) C: Cyclic NMES Duration: 30min, 5x over 2wks	Fugl Meyer Upper Extremity: (+exp) Manual Muscle Testing: (+exp) Modified Barthel Index: (+exp) Active wrist Range of Motion: (+exp)
Cunningham et al. (2018) RCT (6) Nstart= 15 Nend= TPS= Chronic Crossover	E: Cyclic Neuromuscular Electrical Stimulation cNMES C: Controlled Functional Electrical stimulation CCFES (bilateral controlled) Duration: 1hr, 1x/condition, over 1 week washout	Improved interhemispheric inhibition (+con)
Jeon et al. (2017) RCT (5) N _{Start} =20 N _{End} =20 TPS=Subacute	E: EMG-triggered NMES C: FES Duration: 30min, 5d/wk for 4wk	Fugl-Meyer Assessment (-)
Knutson et al. (2016)	E1: Functional Electrical Stimulation E2: Cyclic NMES Duration: 2hrs, 7d/wk for 6 wk	Fugl-Meyer Assessment (-) Arm Motor Abilities Test (-) Box and Block Test (+exp)

RCT (5)		
N _{Start} =80		
N _{End} =64		
TPS=Chronic		
Wilson et al. (2016)	E1: Cyclic Neuromuscular Electrical	Fugl-Meyer Assessment (-)
RCT (6)	Stimulation	 Modified Arm Motor Ability Task (-)
N _{Start} =122	E2: Electromyographically-triggered	
N _{End} =96	Neuromuscular Electrical Stimulation	
TPS=Subacute	E3: Sensory Stimulation	
	Duration: 40 min (2x/d), 5d/wk for 8 wk	
Boyaci et al. (2013)	E1: EMG-triggered NMES	E1 vs C
RCT (7)	E2: Cyclic NMES	Fugl-Meyer Assessment (+exp)
Nstart=31	C: Control	Motor Activity Log (+exp)
N _{End} =31	Duration: 45 min/d, 5d/wk for 3 wk	Spasticity in wrist flexor (-)
TPS=Chronic	, ,	Spasticity in finger flexor (-)
		Range of Motion in active wrist extension (+exp)
		Range of Motion in active metacarpophalangeal
		joint extension (+exp)
		Grip strength (+exp)
		E2 vs C
		Fugl-Meyer Assessment (+exp ₂)
		Motor Activity Log (-)
		Spasticity in wrist flexor (+exp ₂)
		Spasticity in finger flexor (-)
		Range of Motion in active wrist extension (+exp ₂)
		Range of Motion in active metacarpophalangeal
		joint extension (-)
		Grip strength (-)
		E1 vs E2
		Fugl-Meyer Assessment (-) Motor Activity Log (-)
		Spasticity in wrist flexor (-) Spasticity in finger flexor (-)
		Spasticity in finger flexor (-) Pange of Metion in active write extension (-)
		Range of Motion in active wrist extension (-) Range of Metion in active meta-company learned.
		Range of Motion in active metacarpophalangeal init automaton ()
		joint extension (-)
		Grip strength (-)
You et al. (2013)	E: Mental training + EMG stimulation	Range of Motion (-)
RCT (7)	C: FES	Modified Ashworth Scale (-)
N _{Start} =18	Duration: 40 min/d, 2d/wk for 4wk	Fugl-Meyer Assessment (+exp)
N _{End} =16		Motor Activity Log (-)
TPS=Chronic		Barthel Index (-)
Knutson et al. (2012)	E1: Contralaterally controlled FES	Maximum finger extension angle (-)
RCT (6)	E2: Cyclic NMES	Tracking error (% of AROM) (-)
N _{start} =21	Duration: 90 min/d, 3d/wk for 4 wk	Fugl-Meyer Assessment (-)
N _{end} =21		Box and Block Test (-)
TPS=Subacute		Arm Motor Abilities Test Score (-)
Chae et al. (2009)	E1: EMG-triggered NMES	Arm Motor Ability Test (-)
RCT (8)	E2: Cyclic NMES	
N _{start} =26	Duration: 1 hr/d, 7d/wk for 6 wk	
Nend=26		
TPS=Chronic		
De Kroon & Ijzerman (2008)	E1: EMG-triggered NMES	Action Research Arm test (-)
RCT (7)	E2: Cyclic NMES	Action Research Arm test (-) Grip Strength (-)
N _{start} =22	Duration: 30 min/d, 3d/wk for 6 wk	Fugl-Meyer Score (-) Metricity Index (-)
N _{end} =22		Motricity Index (-)
TPS=Chronic	E4 EMO (LANGES	F M
Hemmen & Seelen (2007)	E1: EMG-triggered NMES	Fugl-Meyer Assessment (-)
RCT (7)	E2: Cyclic NMES	Action Research Arm test (-)
N _{start} =27	Duration: 30 min/d, 5d/wk for 3mo	

N _{end} =27		
TPS=Subacute Cauraugh et al. (2005) RCT (4) N _{start} = 21 N _{end} = 21 TPS= Chronic	E1: NMES bilateral (impaired arm stimulation) E2: NMES bilateral (unimpaired moving) C: NMES unilateral stimulation Duration: 90min, 4d over 2wks	E1 Vs C Reaction time (-) Movement time: (+exp) Velocity: Unidirectional: (+con) Bidirectional (+exp) Deceleration time: (+exp) E2 Vs C Reaction time: (-) Movement time: (+exp) Velocity: Unidirectional: (+con) Bidirectional (+exp) Deceleration time: (+exp) E1 vs E2 Reaction time: (-) Movement time: (-) Velocity: Unidirectional (-) Bidirectional (-) Deceleration time: (-)
Cauraugh et al. (2003) RCT (6) N _{start} = 28 N _{end} = 28 TPS= Chronic	E1: Blocked NMES training E2: Random NMES training C: No stimulation control Duration: 90min, 4d over 2wks	E1 Vs C Box and Block Test: (+exp) E2 Vs C Box and Block Test: (+exp) E1 vs E2
		Box and Block Test: (-)
	Low versus high intensity NME	
Page et al. (2012) RCT (7) N _{start} =32 N _{end} =32 TPS=Chronic	E1: 30 minutes of electrical stimulation therapy with repetitive task specific practice E2: 60 minutes of electrical stimulation therapy with repetitive task specific practice E3: 120 minutes of electrical stimulation therapy with repetitive task specific practice Duration: 30 min OR 60 min OR 120 min, 5d/wk for 8 wk.	 E3 vs. E2/E1 Fugl-Meyer Assessment (+exp₃) Arm Motor Ability Test (+exp₃) Action Research Arm Test (+exp₃)
Hsu et al. (2010) RCT (6) Nstart=66 Nend=66 TPS=Acute	E1: High intensity cyclic NMES (60 min) E2: Low intensity cyclic NMES (30 min) C: No treatment Duration: 30/60 min, 5d/wk for 4 wk	E1/E2 vs C Fugl Meyer Assessment (+exp1, +exp2) Action Research Arm Test (+exp1, +exp2) Grasp (+exp1, +exp2) Grip (+exp1, +exp2) Pinch (+exp1, +exp2) Gross Movement (+exp1, +exp2) E1 vs E2 Fugl Meyer Assessment (-) Action Research Arm Test (-) Grasp (-) Grip (-) Pinch (-) Gross Movement (-)
Kowalczewski et al. (2007) RCT (6) N _{start} =19 N _{end} =18 TPS=Subacute	E1: High intensity FES exercise therapy (60 min) E2: Low intensity FES exercise therapy (15 min) Duration: 15/60 min, 5d/wk for 3 wk	Wolf Motor Function Test (+exp ₁) Motor Activity Log (-) Fugl-Meyer Assessment (-)

	High versus low frequency of	cyclic NMES
Doucet and Griffin (2013) RCT (5) N _{Start} =16 N _{End} =16 TPS=Chronic	E1: High frequency cyclic NMES (40Hz) E2: Low frequency cyclic NMES (20Hz) Duration: 1 hr/d, 4d/wk for 4 wk	Lateral pinch strength (+exp) Minnesota Manual Dexterity Test (+exp) Endurance of thumb adduction (+exp)
	NMES combined with Thermal	l Stimulation
Chen et al. (2019) RCT (6) N _{start} = 43 N _{end} = 38 TPS= Chronic	E: NMES + thermal stimulation (15/15min hybrid) C: NMES or thermal stimulation (30min) Duration: 3x/wk, 8wks	Fugl-Meyers Upper Extremity: (-) Motricity Index: (-) Modified Ashworth Scale: (-) Barthel's Index: (-)
	NMES + Bilateral Arm Tr	raining
Cauraugh et al. (2011) RCT (6) N _{start} = 18 N _{end} = 18 TPS= Chronic	E: Long term care (BAT +NMES) (10mo) C: Short term care (BAT +NMES) (4wks) Duration: 90min, 1x/wk, (16mo follow-up retention test)	Box and Block Test: (+exp) Reaction time: (+exp) Force produced: (+exp)
	NMES combined with Menta	al Imagery
Park et al. (2019) RCT (8) Nstart=68 Nend=68 TPS=Chronic	E: Mental imagery + electromyogram- triggered neuromuscular electrical stimulation (EMG-NMES) C: Electromyogram-triggered neuromuscular electrical stimulation Duration: 30min, 5d/wk, 6wks	 Action Research Arm Test: (-) Fugl-Meyer upper extremity: (-) Korean version of Modified Barthel Index: (-)
	Early versus delayed	FES
Popovic et al. (2004) RCT (6) Nstart=41 Nend=32 TPS=Acute	E: Early (acute) FES C: Delayed (chronic) FES Duration: 30 min/d, 7d/wk for 3 wk	Upper extremity performance test (+exp)
	EMG Bridge versus cN	IMES
Zhou et al. (2017) RCT (6) Nstart=42 Nend=36 TPS=Subacute	E: Electromyogrpahical bridge C: Cyclic NMES Duration: 2 sessions over 4 wks	 Brunnstrom stage: (+exp) Fugl Meyer Upper Extremity: (+exp) Motor Status Scale: (+exp)
	FES combined with I	BCI
Li et al. (2014) RCT (6) N _{start} = 15 N _{end} = 14 TPS= Subacute	E: Brain-computer Interface (BCI) + Functional Electrical Stimulation (FES) C: Conventional therapy + FES Duration: 1-1.5hrs, 3x/wk, (rehab 5x/wk, 8wkS)	Action Research Arm Test: (+exp) Fugle-Meyers Assessment Upper Extremity: (-)
Young et al. (2016) RCT (5) N _{Start} =19 N _{End} =10 TPS=Chronic	E: Brain computer interface training C: No training Duration: 120min/d for 9-15d	Stroke Impact Scale (-) Action Research Arm Test (-) 9 Hole Peg Test (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

texp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

Conclusions about NMES

	MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of Cyclic NMES to produce greater improvements in motor function than sham stimulation or conventional therapy .	6	Tilkici et al. 2017; Baygutalp et al. 2014; Lin and Yan 2011; Mann et al. 2005; Powell et al. 1999; Chae et al. 1998	
1a	Cyclic NMES combined with arm robotics may not have a difference in efficacy when compared to arm robotics on their own or conventional therapy for improving motor function.	3	Miyasaka et al. 2016; Lee et al. 2015; Hayward et al. 2013	
1b	Cyclic NMES combined with repetitive task training may produce greater improvements in motor function than repetitive task training alone.	1	Gharib et al. 2014	
1a	EMG-triggered NMES may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving motor function.	9	Kirac-Unal et al. 2019; Park et al. 2017; Kwakkel et al. 2016; Shin et al. 2008; Bhatt et al. 2007; Gabr et al. 2005; Kimberley et al. 2004; Cauraugh et al. 2000; Francisco et al. 1998	
1a	EMG-triggered NMES combined with arm robotics may produce greater improvements in motor function than arm robotics on their own or conventional therapy.	2	Qian et al. 2017;	
1b	EMG-triggered NMES combined with arm robotics may produce greater improvements in motor function than EMG combined with arm robotics alone.	1	Hu et al. 2015	
1a	There is conflicting evidence about the effect of EMG-triggered NMES combined with mirror therapy to improve motor function when compared to mirror therapy on its own.	2	Schick et al. 2017; Kojima et al. 2014	
1b	EMG-triggered NMES combined with splints may produce greater improvements in motor function than splints on their own.	1	Shindo et al. 2011	
1a	There is conflicting evidence about the effect of FES to improve motor function when compared to sham stimulation or conventional therapy .	7	Pan et al. 2018; Carda et al. 2017; Maquez-Chin et al. 2017; Yuzer et al. 2017; Mangold et al. 2009; Thrasher et al. 2008; Ring and Rosenthal, 2005; Popovic et al. 2003	
1b	FES of extensors and flexors may not have a difference in efficacy when compared to FES of extensors only for improving motor function.	1	De Kroon et al. 2004	
1b	FES may produce greater improvements in motor function than mirror therapy .	1	Mathieson et al. 2018	
2	There is conflicting evidence about the effect of FES combined with task-specific training or myoelectrical control to improve motor function when compared to task-specific training.	2	Jonsdottir et al. 2017; Alon et al. 2007	

	FES combined with action observation and brain		Kim et al, 2016
	computer interface may produce greater		,
1b	improvements in motor function than conventional	1	
	therapy.		
	FES combined with biofeedback and mirror		Kim et al. 2015
	therapy may produce greater improvements in motor	4	
2	function than FES combined with mirror therapy or	1	
	conventional therapy.		
	FES combined with botulinum toxin A and a home		Weber et al. 2010
	exercise program may not have a difference in		
1b	efficacy when compared to botulinum toxin A	1	
	combined with a home exercise program for		
	improving motor function.		
4.1	Bilateral arm training combined with FES may		Chan et al. 2009
1b	produce greater improvements in motor function than	1	
	bilateral arm training combined with sham FES.		Doly et al. 2100
	Distal FES combined with robotics may not have a		Daly et al. 2109
2	difference in efficacy when compared to proximal or	1	
	whole arm FES for improving motor function.		Karaahmet et al
	FES combined with cycling ergometry may not		2109
2	have a difference in efficacy when compared to conventional care alone for improving motor	1	
	function.		
	FES combined physical therapy may produce		Khan et al. 2019
1b	greater improvements in motor function than physical	1	
16	therapy alone.		
	EMG-triggered NMES may not have a difference in		Wilson et al. 2016;
1a	efficacy when compared to cyclic NMES for	3	Boyaci et al. 2013; De Kroon et al.
Ia	improving motor function.	3	2008; Hemmen et al.
	TMO triangular ANNATO many not being a difference in		2007 Jeon et al. 2017
•	EMG-triggered NMES may not have a difference in	4	Jeon et al. 2017
2	efficacy when compared to FES for improving motor function.	1	
	CCFES or FES may not have a difference in efficacy		Zheng et al. 2019;
1b	when compared to cyclic NMES or EMG triggered	3	Knutson et al. 2016;
10	NMES for motor function.	3	Knutson et al. 2012
	There is conflicting evidence about the effect of		Knutson et al. 2020
2	CCFES on the hand and arm when compared to arm	1	
_	and hand NMES for improving motor function.		
	High intensity NMES may produce greater		Page et al. 2012;
1a	improvements in motor function when compared to	3	Hsu et al. 2020; Kowalczewski et al.
	low intensity NMES.		2007
	NMES combined with thermal stimulation may not		Chen et al. 2019
1b	have a difference in efficacy when compared to NMES	1	
10	or thermal stimulation alone for improving motor	1	
	function.		
	Long term NMES combined with bilateral arm		Cauraugh et al. 2011
1b	training may produce greater improvements in motor	1	
10	function than short term NMES combined with		
	bilateral arm training.		

1b	EMG-NMES combined with mental imagery may not have a difference in efficacy when compared to cyclic EMG-NMES for improving motor function.	1	Park et al. 2019
1b	Early FES may produce greater improvements in motor function than delayed FES .	1	Popovic et al. 2004
1b	EMG bridging techniques may produce greater improvements in motor function than cyclic NMES	1	Zhou et al. 2017
1b	FES combined with BCI may not have a difference in efficacy compared to FES and conventional therapy or non-BCI training alone for improving dexterity.	2	Young et al. 2016; Li et al. 2014

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1b	EMG-triggered NMES may produce greater improvements in dexterity than sham stimulation or conventional therapy.	5	Shin et al. 2008; Bhatt et al. 2007; Kimberley et al. 2004; Cauraugh and Kim 2003; Cauraugh et al. 2000
1b	EMG-triggered NMES combined with mirror therapy may not have a difference in efficacy when compared to mirror therapy on its own for improving dexterity.	1	Schick et al. 2017
1b	FES may produce greater improvements in dexterity than sham stimulation or conventional therapy .	1	Demir et al. 2018; Ring and Rosenthal, 2005
2	FES combined with task-specific training may produce greater improvements in dexterity than task-specific training.	1	Alon et al. 2007
2	FES combined with biofeedback and mirror therapy may produce greater improvements in dexterity than FES combined with mirror therapy or conventional therapy.	1	Kim et al. 2015
1b	There is conflicting evidence about the effect of FES to improve dexterity when compared to cyclic NMES .	2	Knutson et al. 2016; Knutson et al. 2012
2	CCFES on the hand and arm may not have a difference in efficacy when compared to arm and hand NMES for improving dexterity.	1	Knutson et al. 2020
1b	Blocked NMES training may not have a difference in efficacy when compared to random NMES training for improving dexterity.	1	Cauraugh et al. 2003
2	High frequency NMES (40hz) may produce greater improvements dexterity than low frequency NMES (20hz).	1	Doucet and Griffin
1b	Long term NMES combined with bilateral arm training may produce greater improvements in dexterity than short term NMES combined with bilateral arm training.	1	Cauraugh et al. 2011

2	FES combined with BCI may not have a difference in	4	Young et al. 2016
2	efficacy compared to non-BCI training alone for improving dexterity.	1	

PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References	
1b	EMG-triggered NMES combined with mirror therapy may not have a difference in efficacy when compared to mirror therapy on its own for improving proprioception.	1	Schick et al. 2017	

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of cyclic NMES to improve spasticity when compared to sham stimulation or conventional therapy.	3	Tilkici et al. 2017; Baygutalp et al. 2014; 1996; Faghri et al. 1994	
1b	NMES combined with stretching may produce greater improvements in spasticity then NMES alone, stretching alone, or sham.	3	Dejong et al. 2013; Sahin et al. 2012; King et al. 1996	
1a	There is conflicting evidence about the effect of cyclic NMES combined with arm robotics to improve spasticity when compared to arm robotics on their own or conventional therapy.	2	Barker et al. 2017; Lee et al. 2015	
1b	Cyclic NMES combined with repetitive task training may produce greater improvements in spasticity than repetitive task training alone.	1	Gharib et al. 2014	
1b	EMG-triggered NMES may produce greater improvements in spasticity than sham stimulation or conventional therapy.	1	Dosch et al. 2014; Cauraugh and Kim, 2003; Heckman et al. 1997	
1a	of EMG-triggered NMES combined with arm robotics may produce greater improvements in spasticity than arm robotics on their own or conventional therapy.	2	Qian et al. 2017; Barker et al. 2008	
1b	EMG-triggered NMES combined with arm robotics may not have a difference in efficacy when compared to EMG combined with arm robotics alone for improving spasticity.	1	Hu et al. 2015	
1a	FES may not have a difference in efficacy when compared sham stimulation or conventional therapy for improving spasticity.	8	Demir et al. 2018; Carda et al. 2017; Yuzer et al. 2017; Karakus et al. 2013; Hara et al. 2008; Hara et al. 2006; Ring and Rosenthal, 2005; Faghri and Rodgers, 1997	
2	FES combined with biofeedback and mirror therapy may not have a difference in efficacy when compared to FES combined with mirror therapy or conventional therapy for improving spasticity.	1	Kim et al. 2015	

1a	EMG-triggered NMES may not have a difference in efficacy when compared to cyclic NMES for improving spasticity.	1	Boyaci et al. 2013
1b	NMES combined with thermal stimulation may not have a difference in efficacy when compared to NMES or thermal stimulation alone for improving spasticity.	1	Chen et al. 2019

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1b	There is conflicting evidence about the effect of cyclic NMES to improve range of motion when compared to sham stimulation or conventional therapy.	2	Tilkici et al. 2017; Malhotra et al. 2013
2	Cyclic NMES combined with arm robotics may not have a difference in efficacy when compared to arm robotics on their own or conventional therapy for improving range of motion.	1	Miyasaka et al. 2016
1b	Cyclic NMES combined with repetitive task training may produce greater improvements in range of motion than repetitive task training alone.	1	Gharib et al. 2014
2	EMG-triggered NMES may produce greater improvements in range of motion than sham stimulation or conventional therapy.	2	Heckman et al. 1997; Bowman et al. 1979
1b	EMG-triggered NMES combined with mirror therapy may produce greater improvements in range of motion than mirror therapy on its own.	1	Kojima et al. 2014
2	FES may produce greater improvements in range of motion when compared to sham stimulation or conventional therapy.	3	Hara et al. 2008; Hara et al. 2006; Faghri and Rodgers, 1997
1a	EMG-triggered NMES may not have a difference in efficacy when compared to cyclic NMES for improving range of motion.	1	Boyaci et al. 2013
1b	FES of extensors and flexors may not have a difference in efficacy when compared to FES of extensors only for range of motion.	1	De Kroon et al. 2004
1b	FES combined with action observation and brain computer interface may produce greater improvements in motor function than conventional therapy.	1	Kim et al, 2016
1b	FES or CCFES may not have a difference in efficacy when compared to cyclic NMES or EMG NMES for improving range of motion.	3	Zheng et al. 2019; Knutson et al. 2016; Knutson et al. 2012
2	CCFES on the hand and arm may produce greater improvements in range of motion when compared to arm and hand NMES.	1	Knutson et al. 2020
2	FES combined with cycling ergometry may not have a difference in efficacy when compared to conventional care alone for range of motion.	1	Karaahmet et al 2109

	High frequency NMES (40hz) may produce greater		Doucet and Griffin
2	improvements range of motion than low frequency	1	
	NMES (20hz).		

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Cyclic NMES may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving performance of activities of daily living.	3	Tilkici et al. 2017; Baygutalp et al. 2014; Lin and Yan 2011
1a	Cyclic NMES combined with arm robotics may not have a difference in efficacy when compared to arm robotics on their own or conventional therapy for improving performance of activities of daily living.	3	Barker et al. 2017; Lee et al. 2015; Hayward et al. 2013
1a	EMG-triggered NMES may not improve performance of activities of daily living when compared to sham stimulation or conventional therapy.	5	Kirac-Unal et al. 2019; Kwakkel et al. 2016; Kimberely et al. 2004; Cauraugh et al. 2000; Francisco et al. 1998
1b	EMG-triggered NMES combined with splints may not have a difference in efficacy when compared to splints on their own for improving performance of activities of daily living.	1	Shindo et al. 2011
1a	There is conflicting evidence about the effect of FES to improve performance of activities of daily living when compared to sham stimulation or conventional therapy .	5	Demir et al. 2018; Carda et al. 2017; Marquez-Chin et al. 2017; Yuzer et al. 2017; Mangold et al. 2009
1b	FES may not have a difference in efficacy when compared to mirror therapy for improving performance of activities of daily living.	1	Mathieson et al. 2018
1b	FES combined with action observation and brain computer interface may produce greater improvements in motor function than conventional therapy.	1	Kim et al, 2016
2	FES combined with biofeedback and mirror therapy may produce greater improvements in performance of activities of daily living than FES combined with mirror therapy or conventional therapy.	1	Kim et al. 2015
1b	FES combined with biofeedback and mirror therapy may not have a difference in efficacy when compared to FES combined with mirror therapy or conventional therapy for improving performance of activities of daily living.	1	Kim et al. 2015
1b	FES combined with botulinum toxin A and a home exercise program may not have a difference in efficacy when compared to botulinum toxin A combined with a home exercise program for improving performance on activities of daily living.	1	Weber et al. 2010

	Bilateral arm training combined with FES may not		Chan et al. 2009
1b	have a difference in efficacy when compared to		5.1.a.i. 5. a.i. 2000
	bilateral arm training combined with sham FES for	1	
	improving performance of activities of daily living.		
	FES combined with cycling ergometry may not have		Karaahmet et al
2	a difference in efficacy when compared to	4	2109
_	conventional care alone for activities of daily living.	ı	
	FES combined physical therapy may produce		Khan et al. 2019
1b	greater improvements in motor function than physical	1	
ID	therapy alone.	'	
	EMG-triggered NMES may not have a difference in		Wilson et al. 2016;
1a	efficacy when compared to cyclic NMES for improving	3	Boyaci et al. 2013;
Ia	performance of activities of daily living.	3	Chae et al. 2009
	High intensity NMES may not have a difference in		Kowalczewski et al.
1b	effiacy when compared to low intensity NMES for	1	2007
110	improving performance in activities of daily living.		
	NMES combined with thermal stimulation may not		Chen et al. 2019
4.	have a difference in efficacy when compared to NMES	_	
1b	or thermal stimulation alone for improving	1	
	performance of activities of daily living.		
	CCFES or FES may not have a difference in efficacy		Zheng et al. 2019;
1b	when compared to cyclic NMES or EMG NMES for	3	Knutson et al. 2016; Knutson et al. 2012
	improving performance on activities of daily living.		MidiSoli Ct al. 2012
	EMG-NMES combined with mental imagery may not		Park et al. 2019
1h	have a difference in efficacy when compared to cyclic	4	
1b	EMG-NMES for improving performance of activities of	1	
	daily living.		

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1a	EMG-triggered NMES improve muscle strength when compared to sham stimulation or conventional therapy.	3	Kirac-Unal et al. 2019; Kwakkel et al. 2016; Shin et al. 2008	
1b	EMG-triggered NMES combined with arm robotics may not have a difference in efficacy when compared to arm robotics on their own or conventional therapy for improving muscle strength.	1	Barker et al. 2017	
1n	FES of extensors and flexors may not have a difference in efficacy when compared to FES of extensors only for improving muscle strength.	1	De Kroon et al. 2004	
2	There is conflicting evidence about the effect of FES combined with biofeedback and mirror therapy to improve muscle strength when compared to FES combined with mirror therapy or conventional therapy.	1	Kim et al. 2015	
1a	EMG-triggered NMES may not have a difference in efficacy when compared to cyclic NMES for improving muscle strength.	2	Boyaci et al. 2013; De Kroon et al. 2008	

2	FES may produce greater improvemnts in mucle strenght when compared to cyclic NMES .	1	Zheng et al. 2019
1b	High intensity NMES may produce greater improvements in muscle strength when compared to low intensity NMES.	1	Hsu et al. 2020;
2	High frequency NMES (40hz) may produce greater improvements muscle strength than low frequency NMES (20hz).	1	Doucet and Griffin
1b	Long term NMES combined with bilateral arm training may produce greater improvements in muscle strength than short term NMES combined with bilateral arm training.	1	Cauraugh et al. 2011

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of FES to improve stroke severity when compared to conventional therapy .	2	Yuzer et al. 2017; Karakus et al. 2013	
1b	FES combined with physical therapy may produce greater improvements on measures of stroke severity than physical therapy alone .	1	Khan et al. 2019	
2	CCFES on the hand and arm may not have a difference in efficacy when compared to arm and hand NMES for stoke severity.	1	Knutson et al. 2020	
1b	EMG bridging techniques may produce greater improvements in stroke severity than cyclic NMES	1	Zhou et al. 2017	
1b	FES combined with BCI may not have a difference in efficacy compared to non-BCI training alone.	1	Young et al. 2016	

The literature is mixed regrading cyclic and EMG-triggered neuromuscular electrical stimulation types, as well as functional electrical stimulation, alone or combined with other therapy approaches, for upper limb rehabilitation following stroke.

The literature is mixed regrading combinations of neuromuscular electrical stimulation with other therapies for upper limb rehabilitation following stroke.

The various types of neuromuscular electrical stimulation may not be more beneficial compared to one another.

Transcutaneous Electrical Nerve Stimulation (TENS)

Adopted from: http://www.massageprocedures.com/complementary-modalities/tens

Transcutaneous electrical nerve stimulation (TENS) involves the application of electrical current through surface electrodes on the skin to facilitate activation of nerves (Teoli et al. 2019). Stimulation can be applied at a low frequency (<10Hz) to produce muscle contractions or at a high (>50Hz) frequency primarily used to produce paresthesia without muscle contractions (Teoli et al. 2019). TENS units are often small, portable, battery-operated devices (Teoli et al. 2019). The application of afferent electrical stimulation at the sensory level may help to enhance neuroplasticity of the brain, through increased activation and recruitment of cortical networks involving contralesional primary sensory cortex, supplementary motor area, dorsal premotor cortex, posterior parietal cortex, and secondary sensory cortices (Veldman et al. 2015; Sonde et al.1998).

A total of 21 RCTs were found that evaluated the use of TENS for upper extremity motor rehabilitation poststroke.

19 RCTs compared TENS to conventional care or sham (Chatterjee et al. 2019; Ertzgaard et al. 2018; Kattenstroth et al. 2018; Kimberley et al. 2018; Jung et al. 2017; Liu et al. 2017; Carrico et al. 2016; Fleming et al. 2015; Dos Santos-Fontes et al. 2013; Kim et al. 2013a; Ikuno et al. 2012; Klaiput et al. 2009; Celnik et al. 2007; McDonnell et al. 2007; Wu et al. 2006; Conforto et al. 2002; Sonde et al. 1998; Tekeoglu et al. 1998; Butefisch et al. 1995). One RCT compared EMG-TENS to EMG-NMES (Chuang et al. 2017), and one RCT compared high to low dose stimulation (Ghaziani et al. 2018).

The methodological details and results of all 21 RCTs are presented in Table 23.

Table 23. RCTs Evaluating TENS Interventions for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Sizestart	frequency per week for total	
Sample Sizeend	number of weeks	
Time post stroke category	F. Conservational state along	Astica December Asse Tests ()
Chatterjee et al. (2019) RCT (7)	E: Sensory stimulation glove	Action Research Arm Test: (-) Fugl Meyers Upper Extremity: (-)
$N_{\text{start}} = 40$	C: Conventional Therapy (not time matched)	Nine Hole Peg Test: (-)
N _{end} = 39	Duration: 45min, 7x/wk for 2wks	• Nille Hole Feg Test. (-)
Ertzgaard et al. (2018)	E: Transcutaneous Electrical Nerve	Action Research Arm Test: (-)
RCT (10)	Stimulation (TENS)	Modified Ashworth Scale: (-)
N _{start} = 31	C: Sham	Wolf Motor Function Test: (-)
N _{end} = 27	Duration: 60min, 4x/wk, 6wks (no	()
TPS= Chronic	washout)	
Kattenstroth et al. (2018)	E: Repetitive Sensory Stimulation	Tactile Discrimination (+exp)
RCT (4)	C: Sham Repetitive Sensory	Grating Orientation Task (+exp)
N _{Start} =71	Stimulation	Grip Strength (+exp)
$N_{End} = 48$	Duration: 45min/d, 5d/wk for 2wk	9 Hole Peg Test (-)
TPS= Acute		Jebsen Taylor Hand Function Test (-)
		Joint Position Sense Test (-)
Kimberley et al. (2018)	E: Active (0.8 mA) VNS w/ rehab	Fugle-Meyers Assessment Upper Extremity: (-)
RCT (9)	C: Sham VNS w/ rehab	Wolf Motor Function Test
N _{start} = 17	Duration: 3x/wk for 6 wks in clinic	Functional: (+exp)
N _{end} = 17	rehab + 90 days at home therapy,	• Time: (-)
TPS= Chronic	then crossover and repeat	Box and Block Test: (-)
		Nine Hole Peg Test: (-)
		Stroke Impact Scale: (-)
		Motor Activity Log: (-)
Jung et al. (2017)	E: Transcutaneous Electrical Nerve	Manual muscle test (+exp)
RCT (7)	Stimulation and Task-Related Training	Active Range of Motion (+exp)
N _{Start} =46	C: Sham Transcutaneous Electrical	Fugl-Meyer Assessment (+exp
N _{End} =46	Nerve Stimulation and Task-Related	
TPS= Chronic	Training	
Liver at al. (2017)	Duration: 1h, 5d/wk for 4wk	Dinch Ctron oth ()
Liu et al. (2017)	E: Peripheral nerve electrical	Pinch Strength: (-) Pundua Postoritu Score (-)
RCT crossover (7)	stimulation	Purdue Dexterity Score: (+exp)
N _{start} = 32	C: Sham	
N _{end} = 32 TPS= Chronic	Duration: 1hr, 1x, 1wk washout	
Carrico et al. (2016)	E: Peripheral nerve stimulation	Fugl Meyer Assessment Upper Extremity: (+exp) Welf Meter Exercise Text (time): (-exp)
RCT (7)	C: Sham	Wolf Motor Function Test (time): (+exp) Astian Bases and Assa Tests (1997)
N _{start} = 36 N _{end} = 31	Duration: 2hrs stim, 4hrs trianing,	Action Research Arm Test: (+exp)
TPS= Chronic	5d/wk, 2wks	
Fleming et al. (2015)	E: Active Somatosensory Stimulation	Action Research Arm Test (+exp)
RCT (7)	C: Sham Somatosensory Stimulation	Fugl-Meyer Assessment (-)
Nstart=33	Duration: 30min/d, 3d/wk for 4wk	Motor Activity Log (-)
Nend=30	Buration. Johnnya, Jaywk 101 4WK	
TPS=Chronic		
TT G=GIIIGIIIG		
dos Santos-Fontes et al.	E: Peripheral nerve stimulation	Jebsen Taylor Hand Function Test (+exp)
(2013)	C: Sham nerve stimulation	Total Taylor Taria ariolion Total (Toxp)
RCT (8)	Duration: 2h/d, 7d/wk for 4wk	
N _{Start} =20		
Nend=20		
		I .
TPS=Chronic		

Kim et al. (2013a)	E: TENS + task related training	Fugl-Meyer Assessment (+exp)		
RCT (7)	C: Placebo + Task related training	Manual Function Test (+exp)		
N _{Start} =34	Duration: 30 min, 5d/wk, for 4 wk	Box and Block Test (+exp)		
N _{End} =30		Modified Ashworth Scale (-)		
TPS=Chronic				
<u>Ikuno et al</u> . (2012)	E: Peripheral sensory nerve	Wolf Motor Function Test (-)		
RCT (8)	stimulation + task-specific therapy	Box and Block Test (-)		
N _{start} =22	C: Task-specific therapy	Pinch Strength (-)		
N _{end} =22	Duration: 6d/wk for 2wk	Grip Strength (-)		
TPS=Subacute				
Klaiput et al. (2009)	E: Peripheral nerve stimulation	Pinch Strength (+exp)		
RCT (8)	C: Sham stimulation			
N _{start} =20	Duration: 2h session			
N _{end} =20				
TPS=Subacute				
11 0-Gusudute				
Celnik et al. (2007)	E1: Single session of peripheral nerve	<u>E1 vs E2/C</u>		
RCT (6)	stimulation	Jebsen-Taylor Hand Function Test (+exp)		
N _{start} =9	E2: No stimulation			
N _{end} =9	C: Asynchronous nerve stimulation			
TPS=Chronic	Duration: 2h session			
McDonnell et al. (2007)	E: Task-specific training with TENS	Fugl-Meyer Assessment (-)		
RCT (7)	C: Task-specific training without	Action Research Arm Test (-)		
N _{start} =20	TENS	Grip lift task (+exp)		
N _{end} =20	Duration: 1h/d, 3d/wk for 3wk			
TPS=Subacute	, ,			
Wu et al. (2006)	E: Single session of peripheral nerve	Jebsen Taylor Hand Function Test (+exp)		
RCT (6)	(somatosensory) stimulation			
N _{start} =9	C: No stimulation			
N _{end} =9	Duration: 2h session			
TPS=Chronic	Buration. 211 30331011			
TT G=GINORIIC				
Conforto et al. (2002)	E: Single session of medial nerve	Pinch muscle strength (+exp)		
RCT (6)	(somatosensory) stimulation	3. (1 1)		
N _{start} =8	C: Sham stimulation			
N _{end} =8	Duration: 2h session			
TPS=Chronic	Duration. 211 36331011			
TI 3-CITOTIC				
Sonde et al. (1998)	E: TENS + physiotherapy	Fugl-Meyer Assessment (+exp)		
RCT (5)	C: Physiotherapy	Barthel Index (-)		
N _{start} =44	Duration: 60min/d, 5d/wk for 12wk			
N _{end} =44				
TPS=Chronic				
Tekeoglu et al. (1998)	E: Rehabilitation + TENS	Barthel Index (+exp)		
RCT (6)	C: Rehabilitation			
N _{start} =60	Duration: 30min/d, 5d/wk for 8wk			
N _{end} =60	, i			
TPS=Subacute				
Bütefisch et al. (1995)	E: Enhanced specific therapy + TENS	Grip strength (-)		
RCT (3)	C: Enhanced non-specific therapy	. • • • • • • • • • • • • • • • • • • •		
N _{start} =27	Duration: 15min (2x per day) for 2wk			
N _{end} =24	(1 11)			
TPS=Subacute				
EMG-triggered NMES with BAT versus EMG-TENS with BAT				
Chuang et al. (2017)	E: Electromyography-Neuromuscular	Fugl-Meyer Assessment (-)		
RCT (7)	Electric Stimulation with Bilateral Arm	. 5		
N _{Start} =38	Training			
N _{End} =38	"			
		-		

TPS=Chronic	C: Electromyography-Transcutaneous	
	Electrical Nerve Stimulation with	
	Bilateral Arm Training	
	Duration: 40min, 3d/wk for 4wk	
	High versus Low Dose Electircal S	omatosensory Stimulation
Ghaziani et al. (2018)	E: High dose electrical somatosensory	Box and Block Test: (-)
RCT (7)	stimulation	Fugle-Meyers Assessment Upper Extremity: (-)
N _{start} = 102	C: Low dose electrical somatosensory	Perceptual Threshold Touch: (-)
N _{end} = 88	stimulation	Hand Grip Strength: (-)
TPS= Acute	Duration: 1hr, 7d/wk up to 4wks post-	Palmer Pinch Strength: (-)
Ch11	stroke	Key Pinch: (-)
		Tip Pinch Strength: (-)
		Modified Rankin Scale: (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

Conclusions about TENS

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of TENS to improve motor function when compared to sham stimulation , task-specific therapy or conventional therapy .	14	Ertzgaard et al. 2018; Kattenstroth et al. 2018; Kimberley et al. 2018; Capone et al. 2017; Jung et al. 2017; Carrico et al. 2016; Fleming et al. 2015; dos Santos-Fontes et al. 2013; Kim et al. 2013; Ikuno et al. 2012; Celnik et al. 2007; McDonnell et al. 2007; Wu et al. 2006; Sonde et al. 1998
1b	TENS combined with EMG and bilateral training may not have a difference in efficacy when compared to EMG-triggered NMES and bilateral training for improving motor function.	1	Chuang et al. 2017
1b	High dose TENS may not have a difference in efficacy when compared to low dose TENS for improving motor function.	1	Ghaziani et al. 2018

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of TENS to improve muscle strength when compared to sham stimulation , task-specific therapy or conventional therapy .	6	Jung et al. 2017; Liu et al. 2017; Ikuno et al. 2012; Klaliput et al. 2009; Conforto et al. 2002; Butefisch et al. 1995
1b	High dose TENS may not have a difference in efficacy when compared to low dose TENS for improving muscle strength.	1	Ghaziani et al. 2018

DEXTERITY

 $^{+\}exp_2$ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of TENS to improve dexterity when compared to sham stimulation and task-specific therapy .	6	Kimberley et al. 2018; Liu et al. 2017; Kim et al. 2013; Ikuno et al. 2012; McDonnel et al. 2007
1b	High dose TENS may not have a difference in efficacy when compared to low dose TENS for improving dexterity.	1	Ghaziani et al. 2018

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	TENS may not have a difference in efficacy when compared to sham stimulation and task-specific therapy for improving spasticity.	3	Ertzgaard et al. 2018; Kattenstroth et al. 2018; Kim et al. 2013

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	TENS may not have a difference in efficacy when compared to sham stimulation and task-specific therapy for improving activities of daily living.	4	Kimberley et al. 2018; Fleming et al. 2015; Sonde et al. 1998; Tekeoglu et al. 1998

The literature is mixed regarding the benefits of transcutaneous electrical nerve stimulation for some aspects of upper limb function following stroke.

Thermal Stimulation

Adopted from: https://beautisecrets.com/paraffin-waxtreatment

Thermal stimulation is another method used to facilitate sensorimotor function, thermal stimulation applied either in a noxious or innocuous form have different effects on sensory receptors in the body (Lin et al. 2017). The perception of pain from nociceptors produced by noxious heat (>43°C) and cold (<8°C) activates brain regions such as the second somatosensory cortex, posterior insular cortex and the premotor area that would not be activated by warm and cold receptors from innocuous heat (40-43°C) and cold (20-28°C) temperatures (Lin et al. 2017). Innocuous thermal stimulation has also been found to induce greater corticomotor excitability, and as such has been suggested to influence cortical reorganization and neuroplasticity (Lin et al. 2017).

A total of five RCTs were found that evaluated the use of thermal stimulation for upper extremity motor rehabilitation poststroke.

Noxious thermal stimulation was used in three RCTs with comparator groups including innocuous thermal stimulation (Lin et al. 2017), thermal stimulation on the lower extremities (Wu et al. 2010a), and conventional rehabilitation (Chen et al. 2005). Innocuous thermal stimulation through paraffin wax compared to a placebo wax was used in a single study (Wang et al. 2017). One RCT compared thermal stimulation combined with vibration (Law et al. 2018).

The methodological details and results of all five RCTs are presented in Table 24.

Table 24. RCTs Evaluating Thermal Stimulation Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)			
Noxious versus innocuous	thermal stimulation, lower extremit	y thermal stimulation and conventional rehabilitation			
Lin et al. (2017) RCT (7) NStart =79 NEnd =61 TPS= Acute	E: Noxious thermal stimulation (Heat: 46-47°C; cold: 7-8°C) C: Innocuous thermal stimulation (Heat: 40-41°C; cold: 20-21°C) Duration: 30min/d, for a total of 20-24 sessions	 Fugl-Meyer Assessment (-) Action Research Arm Test (-) Motricity Index (-) Barthel Index (-) Modified Ashworth Scale (-) 			
Wu et al. (2010a) RCT (6) N _{start} =23 N _{end} =23 TPS=Subacute	E: Thermal stimulation on upper extremity (Heat: 46-47°C; cold: 7-8°C) C: Thermal stimulation on lower extremity (Heat: 46-47°C; cold: 7-8°C)	Stroke Rehabilitation Assessment of Movement (+exp) Action Research Arm Test (+exp)			
Chen et al. (2005) RCT (7) N _{Start} =46 N _{End} =29 TPS=Acute	E: Thermal stimulation (Heat: 46-47°C; cold: 7-8°C) C: Conventional rehabilitation	Brunnstrom Recovery Stages (+exp) Modified Ashworth Scale (-) Grasping (-)			
	Innocuous thermal stimul	ation versus placebo			
Wang et al. (2017) RCT (8) N _{Start} =52 N _{End} =52 TPS= Subacute	E: Paraffin wax thermal stimulation (Heat: 40-42°C) C: Placebo paraffin thermal stimulation	Modified Ashworth Scale (+exp) Brunnstrom Recovery Stages (-)			
	Thermal Stimulation combined with Additional Therapy				
Law et al. (2018) RCT (7) N _{start} = 12 N _{end} = 12 TPS= Subacute	E: Multisensory stimulation (thermal + vibration) C: Conventional therapy Duration: 90min, 2x/wk, 12wks	Fugle-Meyers Assessment: (+exp) Manual Muscle Testing: (+exp) Function Test for the Hemiplegic Upper Extremity-HK: (+exp) Modified Barthel Index: (-)			

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

Conclusions about Thermal Stimulation

	MOTOR FUNCTION		
LoE	Conclusion Statement	RCTs	References

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

1a	There is conflicting evidence about the effect of Noxious thermal stimulation to improve motor function when compared to innocuous thermal stimulation, thermal stimulation on the lower extremities and conventional rehabilitation.	3	Lin et al. 2017; Wu et al. 2010; Chen et al. 2005
1b	Thermal stimulation in combination with muscle vibration may produce greater improvements in motor function than conventional control	1	Law et al. 2018

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1b	Noxious thermal stimulation may not have a difference in efficacy when compared to innocuous thermal stimulation for improving muscle strength.	1	Lin et al. 2017	
1b	Thermal stimulation in combination with muscle vibration may produce greater improvements in muscle strength than conventional control	1	Law et al. 2018	

ACTIVITIES OF DAILY LIVING					
LoE	LoE Conclusion Statement RCTs References				
1b	Thermal stimulation with muscle vibration may not have a difference in efficacy when compared to conventional care for improving activities of daily living.	1	Law et al. 2018		

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Noxious thermal stimulation may not have a difference in efficacy when compared to innocuous thermal stimulation, and conventional rehabilitation for improving spasticity.	2	Lin et al. 2017; Chen et al. 2005	
1b	Innocuous thermal stimulation may produce greater improvements on spasticity than placebo .	1	Wang et al. 2017	

Noxious thermal stimulation may not be beneficial for upper limb rehabilitation following stroke, whereas innocuous thermal stimulation may improve some aspects of upper limb function.

Muscle Vibration

Adopted from: https://www.humanlocomotion.org/products/focal-vibration-motors

Various forms of muscle vibration applications exist including: focal muscle vibration, whole body vibration, and stochastic resonance stimulation. Whole body vibration involves standing, sitting, or performing various tasks/movements on a vibration platform with the purpose of improving muscle strength and function (Liao et al. 2015; Park et al. 2018). Focal muscle vibration is a new therapeutic approach that involves the application of low-amplitude/highfrequency vibratory stimulation to a specific muscle through small portable devices (Celletti et al. 2017).

A total of 15 RCTs were found that evaluated the use of muscle vibration therapies for upper extremity motor rehabilitation poststroke.

Nine RCTs compared focal or segmental muscle vibration to conventional therapy or sham (Amino et al. 2019; Toscano et al. 2019; Calabro et al. 2017; Costantino et al. 2017; Casale et al. 2014; Paoloni et al. 2014; Tavernese et al. 2013; Caliandro et al. 2012; Noma et al. 2012). Two RCTs examined whole body vibration (Ahn et al. 2019; Lee et al. 2016). Two RCTs compared different muscle vibration techniques (Li et al. 2020; Yoon et al. 2017). One RCT examined muscle vibration combined with mirror therapy (Guo et al. 2019). One RCT compared muscle vibration to botox (Wu et al. 2018).

The methodological details and results of all 15 RCTs are presented in Table 25.

Table 25. RCTs Evaluating Muscle Vibration Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	ccal/Segmental Vibration Therapy vs Sha	m or Convetional Care
Amino et al. (2019) RCT (6) Nstart= 37 Nend= 34 TPS= Not reported Ch11	E: Segmental muscle vibration C: Conventional physical therapy Duration: 30min 3x/wk for 8wks	Barthel Index: (-) Elbow Range of Motion: (-) Elbow Tone: (+exp) Elbow Flexor/Extensor Strength: (-)
Toscano et al. (2019) RCT (7) Nstart=22 Nend=22 TPS=Acute Ch11	E: Repetitive focal muscle vibrations C: Sham Duration: Rehab 1hr/d, vibratiom 30min/d, 3ds	Fugl Meyer Assessment: (+exp) Motricity index: (+exp) National Institutes of Health Stroke Scale: (+exp) Modified Ashworth Scale: (-)
Calabro et al. (2017) RCT (7) N _{Start} =20 N _{End} =19 TPS=Subacute-Chronic	E: Focal Muscle Vibration C: Sham Muscle Vibration Duration: 30min/d, 5d/wk for 6wk	Modified Ashworth Scale (+exp) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp)
Costantino et al. (2017) RCT (7) NStart=32 NEnd=32 TPS=Chronic	E: 300 Hz vibrations on the upper limbs C: Sham vibrations Duration: 30min/d, 3d/wk for 4wk	 Hand Grip Strength (+exp) Modified Ashworth Scale (+exp) Disabilities of the Arm, Shoulder and Hand Score (+exp) Functional Independence Measure (+exp) Fugl-Meyer Assessment (+exp) Jebsen Taylor Hand Function Test (+exp)
Casale et al. (2014) RCT (7) N _{start} = 30 N _{end} = 30 TPS= Chronic	E: Muscle vibration C: Sham Duration: (60min physio + 30min stimulation, 5d/wk, 2wks	Motor Assessment Scale: (+exp) Motor Task: Completed (+exp) Time (+exp) Trajectory error (-)
Paoloni et al. (2014) RCT (8) N _{Start} =22 N _{End} =22 TPS=Chronic	E: Segmental muscle vibration + conventional therapy C: Conventional therapy Duration: 30min/d, 5d/wk for 2wk	Muscle modulation of anterior deltoid (+exp) Muscle modulation of biceps brachii (+exp)
Tavernese et al. (2013) RCT (8) N _{Start} =44 N _{End} =44 TPS=Chronic	E: Segmental muscle vibration + standard therapy C: Standard therapy Duration: 30min/d, 5d/wk for 2wk	 Angular velocity at shoulder (+exp) Movement duration (+exp) Normalized jerk (+exp) Elbow angle (-) Shoulder angle (-) Shoulder abduction (-)
Caliandro et al. (2012) RCT (7) N _{Start} =49 N _{End} =36 TPS=Chronic	E: Focal muscle vibration C: Sham Duration: 30min/d, for 3d	Wolf Motor Function Test (+exp)
Noma et al. (2012) RCT (7) Nstart= 36 Nend= 36 TPS= Subacute Chap 11	E: Muscle vibration C: Stretch control C2: Rest control Duration: 1x, 5min	 E Vs C1 Modified Ashworth Scale Elbow flex: (+exp) Wrist flex: (+exp) E VS C2 Modified Ashworth Scale

		Elbow flex: (+exp) Wrist flex: (+exp) C1 Vs C2 Modified Ashworth Scale Elbow flex: (-) Wrist flex: (-)
	Whole Body Vibration vs Convent	
Ahn et al. (2019) RCT (6) N _{start} = 60 N _{end} =60 TPS= Not reported	E: Whole body vibration C: Conventional therapy Duration: Exp/sham (30min/5x/3wk); conv (60-120min/5x/3wk)	Motor Function Test: (+exp) Grip strength: (+exp)
Lee et al. (2016) RCT (6) N _{Start} =45 N _{End} =45 TPS=Chronic	E1: Whole-body vibration and task-related training E2: Whole-body vibration C: Conventional Therapy Duration: 30min/d, 3d/wk for 4wk	E1/E2 vs C Fugl-Meyer Assessment (+exp, +exp2) Grip Strength (+exp, +exp2) E1 vs E2 Grip Strength (+exp, +exp2) E1 vs E2/C Wolf Motor Function Test (+exp1) Modified Ashworth Scale (+exp1)
	Muscle Vibrations Against Each	chother
Li et al. (2020) RCT (7) N _{start} = 86 N _{end} = 82 TPS= Subacute Ch11	E: Radial extraoral shockwave (rEWST) agonist muscle E2: rEWST Antagonist muscle C: Conventional therapy Duration: 6x/wk, 3wks rehab + 5x every 4d shockwave	E1 Vs C • Modified Ashworth Scale: (+exp1) • Modified Tardieu Scale (R1, R2): (+exp1) • Fugle-Meyers Assessment Upper Extremity: (-) E2 Vs C • Modified Ashworth Scale: (+exp2) • Modified Tardieu Scale (R1, R2): (+exp2) • Fugle-Meyers Assessment Upper Extremity: (-) E1 Vs C • Modified Ashworth Scale: (-) • Modified Tardieu Scale (R1, R2): (+exp2) • Fugle-Meyers Assessment Upper Extremity: (-)
Yoon et al. (2017) RCT (5) N _{start} =138 N _{end} =124 TPS=Chronic Ch11	E1: Extracorpeal shockwave on muscle belly E2: Extracorpeal shockwave on myotendinous junction C: sham Duration: 1x/wk for 3wks	E1 vs C Modified Ashworth Scale: (+exp1) Modified Tardieu Scale: (+exp1) E2 vs C Modified Ashworth Scale: (+exp2) Modified Tardieu Scale: (+exp2)
	Vibration Combined with Mirror	therapy
Guo et al. (2019) RCT (6) Nstart= 120 Nend= 120 TPS=Chronic	E1: Mirror therapy + extracorporeal shock E2: Mirror therapy E3: Shockwave alone C: Conventional therapy Duration: 30min 5d/wk, 4wks conv + 20min 5d/wk, 4wks additional	E1 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp1) Modified Ashworth Scale: (+exp1) E2 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp2) Modified Ashworth Scale: (-) E3 Vs C Fugl-Meyer Upper Extremity Assessment: (+exp3) Modified Ashworth Scale: (+exp3) E1 vs E2 Vs E3 Fugl-Meyer Upper Extremity Assessment: (+exp1) Modified Ashworth Scale: (+exp1)
Mu et al. (2019)	Muscle vibration versus	
Wu et al. (2018) RCT (8) N _{start} =42	E: Extracorpeal shockwave C: Botox Duration: 1x/wk, 3wks	At 8wks Modified Ashworth Scale- wrist (-) Modified Ashworth Scale- elbow (-)

N _{end} =40	Tardieu wrist: (-)
TPS=Chronic	Tardieu elbow: (-)
Ch11	Fugl Meyer Upper Extremity: (+exp)
	Passive Range of Motion (+exp)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

+exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

Conclusions about Muscle Vibration

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	Muscle vibration therapies may produce greater improvements in motor function than sham vibration or conventional therapy.	6	Guo et al. 2019; Toscano et al. 2019; Calabro et al. 2017; Costantino et al. 2017; Casale et al. 2014; Caliandro et al. 2012	
1b	Vibration of antagonist muscles may not have a difference in efficacy when compared to agonist muscles improving motor function.	1	Li et al. 2020	
1b	Mirror therapy in combination with shockwave therapy may produce greater improvements in motor function than shockwave alone, or conventional control	1	Guo et al. 2019	
1b	Thermal stimulation in combination with muscle vibration may produce greater improvements in motor function than conventional control	1	Law et al. 2018	
1b	Muscle vibration may produce greater improvements in motor function than botox .	1	Wu et al. 2018	

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1a	Muscle vibration therapies may produce greater improvements in muscle strength than sham vibration or conventional therapy.	4	Amino et al. 2019; Toscano et al. 2019; Costantino et al. 2017; Paoloni et al. 2014	
1a	Whole body vibration therapies may produce greater improvements in muscle strength than sham vibration or conventional therapy.	2	Ahn et al. 2019; Lee et al. 2016	
1b	Thermal stimulation in combination with muscle vibration may produce greater improvements in muscle strength than conventional control	1	Law et al. 2018	

ACTIVITIES OF DAILY LIVING		
LoE Conclusion Statement RCTs Refere		References

⁺exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

1a	Muscle vibration therapies may produce greater improvements in performance on activites of dailing living than sham vibration or conventional therapy.	3	Amino et al. 2019; Calabro et al. 2017; Costantino et al. 2017;
1b	Thermal stimulation with muscle vibration may not have a difference in efficacy when compared to conventional care for improving performance on activites of dailing living.	1	Law et al. 2018

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Muscle vibration therapies may produce greater improvements in spasticity than sham vibration or conventional therapy.	7	Amino et al. 2019; Guo et al. 2019; Tuscano et al. 2019; Calabro et al. 2017; Constantino et al. 2017; Yoon et al. 2017; Noma et al. 2012	
1b	There is conflicting evidence about the effect of vibration of antagonist muscles to improve spasticity when compared to vibration of agonist muscles.	1	Li et al. 2020	
1b	Mirror therapy in combination with shockwave therapy may produce greater improvements in spasticity than shockwave alone, or conventional control	1	Guo et al. 2019	
1b	Muscle vibration may not have a difference in efficacy when compared to botox for improving spasticity.	1	Wu et al. 2018	

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of muscle vibration therapies to improve range of motion when compared to sham vibration or conventional therapy.	2	Amino et al. 2019; Tavernese et al. 2013
1b	Muscle vibration may produce greater improvements in range of motion than botox .	1	Wu et al. 2018

	STROKE SEVERITY		
LoE	Conclusion Statement	RCTs	References
1b	Muscle vibration therapies may produce greater improvements in outcomes of stroke severity than sham vibration or conventional therapy.	1	Toscano et al. 2019

Muscle vibration may be beneficial for improving upper limb function following stroke.

Additional Afferent and Peripheral Stimulation Methods

Adopted from: https://www.saebo.com/saebostim-micro/

Additional sensory stimulation methods evaluated for motor rehabilitation included short wave therapy, repetitive peripheral magnetic stimulation, intermittent pneumatic compression and other sensory stimulation techniques. Short-wave therapy is a non-invasive intervention in which electromagnetic radiation is applied to the region of the body typically at 27.12MHz in a continuous or pulse fashion (Wang et al. 2017). In repetitive peripheral magnetic stimulation coils are placed over paralysed muscles that generates a magnetic field that passes through the skin, and in turn can depolarize neurons to allow a muscle contraction (Momosaki et al. 2017). Repetitive peripheral magnetic stimulation can stimulate painlessly deep muscle structures that are out of range of traditional electrical stimulation (Momosaki et al. 2017). Intermittent pneumatic compression is the application of inflatable splints where pressure is applied intermittently to increase sensory input (Cambier et al. 2003).

A total of Nine RCTs were found that evaluated the use of afferent and peripheral stimulation for upper extremity motor rehabilitation poststroke.

Five RCTs examined tactile sensory stimulation (Seo et al. 2019; Law et al. 2018; Hunter et al. 2011; Stein et al. 2010; Cambier et al. 2003). One RCT examined proprioceptive 'rocking chair' stimulation (Feys et al. 1998). One RCT examined repetitive peripheral magnetic stimulation (Krewer et al. 2014). One RCT examined and sensory specific training regime (Carey et al. 2011). One RCT examined sensory stimulation combined with tDCS (Menezes et al. 2018).

The methodological details and results of all Nine RCTs are presented in Table 26.

Table 26. RCTs Evaluating Afferent and Peripheral Stimulation Interventions for Upper Extremity Motor Rehabilitation

Extremity Motor Rehal	Dilitation	
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Tac	tile sensory stimulation compared to con	ventional care or sham
Seo et al. (2019) RCT (9) Nstart= 12 Nend= 12 TPS= Chronic Law et al. (2018)	E: Sensory stimulation vibration bracelet C: Sham Duration: 2hrs, 3x/wk, 2wks E: Multisensory stimulation (thermal +	Sensory Detection Threshold: (-) Box and Block Test: (+exp) Wolf Motor Function Test: (-) Fugle-Meyers Assessment: (+exp) Megual Muscle Testing: (+exp)
RCT (7) N _{start} = 12 N _{end} = 12 TPS= Subacute	vibration) C: Conventional therapy Duration: 90min, 2x/wk, 12wks	Manual Muscle Testing: (+exp) Function Test for the Hemiplegic Upper Extremity-HK: (+exp) Modified Barthel Index: (-)
Hunter et al. (2011) RCT (7) Nstart=76 Nend=75 TPS= Acute	E: Mobilization and Tactile Stimulation (3 dose levels) C: Conventional therapy Duration: 30-120min (3x per day), 5d/wk for 2wk	Motricity Index (-) Action Research Arm Test (-)
Stein et al. (2010) RCT (10) N _{start} =30 N _{end} =30 TPS=Chronic	E: Stochastic resonance stimulation (combination of subthreshold electrical stimulation and vibration) C: Sham stimulation Duration: 3d/wk for 4wk	 Fugl-Meyer Assessment (-) Motor Activity Log (-) Action Research Arm Test (-)
Cambier et al. (2003) RCT (7) Nstart=23 Nend=23 TPS=Subacute	E: Intermittent pneumatic compression C: Sham Duration: 30min/d, 5d/wk for 4wk	Nottingham Sensory Assessment (+exp) Fugl-Meyer Assessment (+exp) Ashworth Scale (-)
	Rocking Chair Proprioceptive Stim	ulation vs Sham
Feys et al. (1998) RCT (6) Nstart=100 Nend=100 TPS=Acute	E: Rocking chair movement (proprioceptive stimulation) C: Sham stimulation Duration: 30min/d, 5d/wk for 6wk	Fugl-Meyer Assessment (-) Action Research Arm Test (-) Barthel Index (-)
	Repetitive Peripheral Magnetic Stim	ulaition vs Sham
Krewer et al. (2014) RCT (9) N _{Start} =63 N _{End} =44 TPS=Chronic	E: Repetitive peripheral magnetic stimulation C: Sham stimulation Duration: 20min/d, 2d/wk for 2wk	Modified Tardieu Scale (-) Fugl-Meyer Assessment (-) Barthel Index (-)
	Sensory Discrimination Training	
Carey et al. (2011) RCT (8) N _{start} = 50 N _{end} = 48 TPS= Chronic	E: Sensory discrimination training C: Sham Duration: 60min, 3x/wk, 10 sessions (3-4wks)	Standardized sensory deficit index Fabric match test: (+exp) Wrist position sense test: (+exp) Finger position sense test: (+exp) Function tactile object recognition test): (+exp)
	Sensory Stimulation Combined	with tDCS
Menezes et al. (2018) RCT (8) N _{start} = 22 N _{end} = 20	E: Active repetitive peripheral nerve sensory stimulation (RPPS) + sham tDCS E2: Sham RRPS + active tDCS E3: Active RRPS + active tDCS	E1 Vs C Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) E2 Vs C

TPS= Chronic	C: Sham RRPS + sham tDCS Duration: 1 (2hrs RPPS, 20min tDCS) /session, 10-15d washout	Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) S Vs C Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) E1 Vs E2 Vs E3 Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-)
--------------	---	---

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Additional Afferent and Peripheral Stimulation

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1b	Tactile stimulation methods may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving motor function.	5	Seo et al. 2019; Law et al. 2018; Hunter et al. 2011; Stein et al. 2010; Cambier et al. 2003
1b	"Rocking chair" proprioceptive stimulation may not have a difference in efficacy when compared to sham stimulation for improving motor function.	1	Feys et al. 1998
1b	Repetitive peripheral magnetic stimulation may not have a difference in efficacy when compared to sham stimulation for improving motor function.	1	Krewer et al. 2014
1b	"Rocking chair" proprioceptive stimulation may not have a difference in efficacy when compared to sham stimulation for improving motor function.	1	Feys et al. 1998

	MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References		
1a	There is conflicting evidence about the effect of tactile stimulation methods to improve muscle strength when compared to sham or conventional care.	2	Law et al. 2018; Hunter et al. 2011		

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Tactile stimulation methods may produce greater improvements in dexterity than sham or conventional therapy	1	Seo et al. 2019	

	ACTIVITIES OF DAILY LIVING		
LoE	Conclusion Statement	RCTs	References

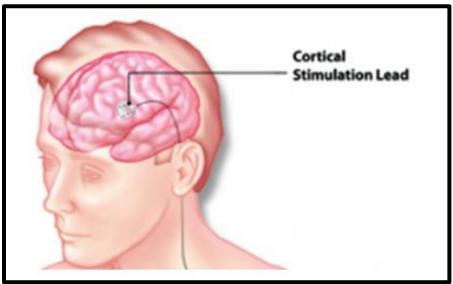
⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α=0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

1a	Tactile stimulation methods may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving activities of daily living.	2	Law et al. 2018; Stein et al. 2010
1b	"Rocking chair" proprioceptive stimulation may not have a difference in efficacy when compared to sham stimulation for improving activities of daily living.	1	Feys et al. 1998
1b	Repetitive peripheral magnetic stimulation may not have a difference in efficacy when compared to sham stimulation for improving activities of daily living.	1	Krewer et al. 2014


SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1b	Tactile stimulation methods may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving spasticity.	1	Cambier et al. 2003	
1b	"Rocking chair" proprioceptive stimulation may not have a difference in efficacy when compared to sham stimulation for improving spasticity.	1	Feys et al. 1998	
1b	Repetitive peripheral magnetic stimulation may not have a difference in efficacy when compared to sham stimulation for improving spasticity.	1	Krewer et al. 2014	

PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of tactile stimulation methods to improve proprioception when compared to sham or conventional care.	2	Seo et al. 2019; Cambier et al. 2003	
1b	Sensory discrimination training may produce greater improvements in proprioception than sham therapy	1	Carey et al. 2011	

Additional afferent and peripheral stimulation may not be beneficial for upper limb rehabilitation following stroke.

Invasive central nervous system stimulation

Invasive Cortical and Nerve Electrode Implant Stimulation

Adopted from: https://www.medgadget.com/2008/01/brain stimulation device for stroke victims fails clinical trial.htm

Cortical stimulation in the motor cortex was traditionally used for the management of neuropathic pain, but preclinical evidence from animal models and clinical observations of pain patients showing motor improvements using this technique led to its adoption as an intervention for motor rehabilitation in stroke survivors (Levy et al. 2008; Tsubokawa et al. 1991). The neurosurgical procedure is performed through an extradural craniotomy where the stimulation electrode is placed on the dura matter of the motor cortex in a region predetermined from stereotaxic neuronavigation and functional magnetic resonance imaging (Levy et al. 2016; Brown et al. 2006). The frequency of stimulation is typically at 50Hz, and stimulation parameters remain consistent for the length of the intervention (Levy et al. 2016; Huang et al. 2008).

However, due to the invasive nature of this procedure and potential for adverse events, RCTs mainly investigating this technique for stroke rehabilitation were feasibility studies (Brown et al. 2006; Huang et al. 2008; Levy et al. 2008), and only recently a phase III clinical trial (Levy et al. 2016).

Vagus nerve stimulation has been shown in preclinical evidence from animal models to influence neuroplasticity, as stimulation can lead to increased acetylcholine and norepinephrine release, both of which are involved in the reorganization of cortical networks (Dawson et al. 2016). As well as pairing upper limb rehabilitation with vagus nerve stimulation has been shown to further promote plasticity in preclinical settings (Hays et al. 2016). Only one study has looked at vagus nerve stimulation with upper limb rehabilitation in stroke survivors (Dawson et al. 2016).

The methodological details and results of 5 RCTs (Levy et al. 2016; Dawson et al. 2016; Huang et al. 2008; Levy et al. 2008; Brown et al. 2006) that have evaluated the use of invasive cortical and nerve stimulation methods for improving motor function post stroke are presented in Table 27.

Table 27. RCTs Evaluating Invasive Brain Stimulation Interventions for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Size _{start}	frequency per week for total	
Sample Sizeend	number of weeks	
Time post stroke category	Market and the state of	
1 (0040)	Motor cortex stimula	
Levy et al. (2016)	E: Cortical implant with epidural 6-	Arm Motor Ability Test (-) Final Manage Age agree (-)
RCT (6)	contact lead perpendicular to the	Fugl-Meyer Assessment (-)
N _{Start} =164	primary motor cortex and a pulse	
N _{End} =128	generator	
TPS=Chronic	C: Conventional rehabilitation	
	Duration: Not Specified	
Huang et al. (2008)	E1: Motor cortex stimulation (50Hz)	Fugl Meyer Score (+exp, +exp ₂)
RCT (5)	C1: Conventional rehabilitation	Box and Block Test (+exp, +exp ₂)
N _{start} =24	E2: Motor cortex stimulation (101Hz)	Stroke Impact Scale (-)
Nend=24	C2: Conventional rehabilitation	Arm Motor Ability Test (-)
TPS=Chronic	Duration: 2.5hr/d, 5d/wk for 4 wk	Grip strength (-)
Levy et al. (2008)	E: Motor cortex stimulation	Fugl Meyer Score (+exp)
RCT (5)	C: Conventional rehabilitation	Arm Motor Ability Test (+exp)
N _{start} =24	Duration: Not Specified	, , , , , , , , , , , , , , , , , , , ,
Nend=24		
TPS=Chronic		
Brown et al. (2006)	E: Motor cortex stimulation	Fugl Meyer Scale (+exp)
RCT (6)	C: Conventional rehabilitation	Stroke Impact Scale (+exp)
N _{start} =10	Duration: 30min/d, 5d/wk for 3 wk	
N _{end} =10	•	
TPS=Chronic		
Vagus nerve stimulation		
Dawson et al. (2016)	E: Impanted vagus nerve stimulation	Fugl-Meyer Assessment (+exp)
RCT (7)	C: Conventional rehabilitation	Action Research Arm Test (-)
N _{Start} =20	Duration: 20min/d, 4 d/wk for 8 wk	Grip Strength (-)
N _{End} =20	•	Nine Hole Peg Test (-)
TPS=Chronic		Box and Block Test (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Invasive Cortical and Nerve Stimulation

	MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of motor cortex stimulation to improve motor function when compared to conventional therapy .	4	Levy et al. 2016; Huang et al. 2008; Levy et al. 2008; Brown et al. 2006	
1b	There is conflicting evidence about the effect of vagus nerve stimulation to improve motor function when compared to conventional therapy.	1	Dawson et al. 2016	

MUSCLE STRENGTH

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at $\alpha \text{=}0.05$ in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

LoE	Conclusion Statement	RCTs	References
2	Motor cortex stimulation may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	1	Huang et al. 2008
1b	Vagus nerve stimulation may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	1	Dawson et al. 2016

	DEXTERITY			
LoE	Conclusion Statement	RCTs	References	
2	Motor cortex stimulation may produce greater improvements in dexterity than conventional therapy.	1	Huang et al. 2008	
1b	Vagus nerve stimulation may not have a difference in efficacy when compared to conventional therapy for improving dexterity.	1	Dawson et al. 2016	

ACTIVITIES OF DAILY LIVING			
1a	There is conflicting evidence about the effect of motor cortex stimulation to improve performance of activities of daily living when compared to conventional therapy .	3	Levy et al. 2016; Huang et al. 2008; Brown et al. 2006

The literature is mixed regarding invasive cortical and nerve stimulation for upper limb rehabilitation following stroke.

Non-invasive brain stimulation

Repetitive Transcranial Magnetic Stimulation (rTMS)

Adopted from: https://www.rtmscentre.co.uk/rtms-treatment-in-the-uk/

Transcranial magnetic stimulation is a painless and non-invasive method of affecting neural activity through the exogenous generation of an electromagnetic field through a coil placed on the scalp, that consequently induces a change in the electrical fields of the brain (Peterchev et al. 2012). The voltage and current of the electromagnetic field generated are dependent on the parameters of the stimulation device, which is not distorted by the biological tissues in which it is applied in (Peterchev et al. 2012). The neuromodulatory effects of transcranial magnetic stimulation are attributed largely to neural membrane polarization shifts that can lead to changes in neuron activity, synaptic transmission, and activation of neural networks (Peterchev et al. 2012). Repetitive transcranial magnetic stimulation (rTMS) is the application of repetitive trains of transcranial magnetic stimulation at regular intervals.

After a stroke, interhemispheric competition is altered; with cortical excitability increasing in the unaffected hemisphere increasing and decreasing in the affected hemisphere (Zhang et al. 2017). rTMS can be used to help modulate this interhemispheric competition, with low stimulation frequencies (≤1Hz) decreasing cortical excitability and inhibiting activity of the contralesional hemisphere, while high frequency (>1Hz) stimulation increases excitability and have a facilitatory effect on activity of the ipsilesional hemisphere (Dionisio et al. 2018).

A growing number of studies have investigated the effects of rTMS on improving upper extremity motor rehabilitation after a stroke. Low frequency rTMS versus sham stimulation or conventional therapy was assessed in 36 RCTs (Dos Santos et al. 2019; Du et al. 2019; El-Tamaway et al. 2019; Cha et al. 2018; Harvey et al. 2018; Long et al. 2018; Tarri et al. 2018; Watanabe et al. 2018; Askin et al. 2017; Gu et al. 2017; Meng and Song, 2017; Ozkeskin et al. 2017; Yang et al. 2017; Du et al. 2016; Li et al. 2016; Blesneag et al. 2015; Cassidy et al. 2015; Ludermann-Podubecka et al. 2015; Matsuura et al. 2015; Abo et al. 2014; Barros Galvao et al. 2014; Rose et al. 2014; Wang et al. 2014; Etoh et al. 2013; Higgins et al. 2013; Saskai et al. 2013; Conforto et al. 2012; Seniow et al. 2012; Emara et al. 2010; Khedr et al. 2009; Takeuchi et al. 2008; Liepert et al. 2007; Pomeroy et al. 2007; Fregni et al. 2006; Mansur et al. 2005;

Takeuchi et al. 2005), while high frequency rTMS versus sham stimulation or conventional therapy was assessed in 16 RCTs (Du et al. 2019; Gu et al. 2017; Guan et al. 2017; Du et al. 2016; Hosomi et al. 2016; Li et al. 2016; Cassidy et al. 2015; Kim et al. 2014; Kwon et al. 2014; Saskai et al. 2013; Chang et al. 2010; Emara et al. 2010; Khedr et al. 2010; Khedr et al. 2009; Malcom et al. 2007; Khedr et al. 2005). RCTs looking at multimodal interventions with rTMS were limited, and combinations included bilateral stimulation (both high and low frequency rTMS; (Long et al. 2018; Takeuchi et al. 2009)), mirror therapy (Ji et al. 2014), virtual reality (Zheng et al. 2015), sensory cueing (Yang et al. 2017), cyclic NMES (Etoh et al. 2019; Tosun et al. 2017), action observation (Noh et al. 2019), mental practice (Pan et al. 2019) and tDCS (Cho et al. 2017).

The methodological details and results of all 52 RCTs evaluating rTMS for the upper extremity motor rehabilitation are presented in Table 28.

Table 28. RCTs Evaluating rTMS Interventions for Upper Extremity Motor Rehabilitation

		pper Extremity Motor Renabilitation
Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Sizestart	frequency per week for total	
Sample Size _{end}	number of weeks	
Time post stroke category		
	equency (1Hz) rTMS vs sham stimulati	
Dos Santos et al. (2019)	E: Low Frequency rTMS	Modified Ashworth Scale: (+exp)
RCT (8)	C: Sham	
N _{start} = 20	Duration: 3x/wk, 10x total + 30min	
N _{end} = 18	Physical Therapy	
TPS= Chronic		
Ch11		
<u>Du et al. (2019)</u>	E1: High frequency (rTMS)	<u>E1 Vs C</u>
RCT (9)	E2: Low frequency rTMS	Fugl-Meyers Upper Extremity: (+exp1)
N _{start} = 60	C: Sham	E2 Vs C
N _{end} = 44	Duration: 5 consecutive days	Fugl-Meyers Upper Extremity: (+exp2)
TPS= Acute	(~22min)	<u>E1 Vs E2</u>
		Fugl-Meyers Upper Extremity: (-)
El-Tamaway et al. (2019)	E: Low frequency rTMS	Fugl-Meyer Assessment: (+exp)
RCT (5)	C: Conventional therapy	Hand Grip Dynamometer: (-)
N _{start} = 40	Duration: 20min, 5x/wk, 2wks	, ()
N _{end} = Not reported		
TPS= Subacute		
Harvey et al. (2018)	E: Navigated low frequency rTMS	Fugl-Meyers Assessment Upper
RCT (8)	C: Sham	Extremity: (-)
N _{start} = 199	Duration: 60min, 3x/wk, 6wks therapy	Action Research Arm Test: (-)
Nend= 169	(15min of stimulation/sham before)	Wolf Motor Function Test: (-)
TPS= Chronic	(10111111 01 01111111111111111111111111	()
Long et al. (2018)	E1: Low Frequency (1Hz) combined	E2 vs C
RCT (7)	with High Frequency (10Hz)	Fugl-Meyer Assessment (+exp ₂)
Nstart =62	Repetitive Transcranial Magnetic	Wolf Motor Function Test (-)
Nend =62	Stimulation	
TPS=Acute	E2: Low Frequency (1Hz) Repetitive	
Multi-site	Transcranial Magnetic Stimulation	
	C: Sham Repetitive Transcranial	
	Magnetic Stimulation	
	Duration: Not specified	
Tarri et al. (2018)	E: Paired associative stimulation	Fugl-Meyer Assessment (-)
RCT (6)	(electrical stimulation + low frequency	- Tagi major ricoccomoni ()
N _{Start} =24	(1Hz) rTMS)	
N _{End} =24	C: Sham Stimulation	
INCHO -ZT	O. Onam Ottificiation	

TPS=Subacute	Duration: Not specified	
Watanabe et al. (2018) RCT (5) Nstart =21 NEnd =21 TPS=Acute	E1: Intermittent Theta-Burst Stimulation E2: Low Frequency (1Hz) Repetitive Transcranial Magnetic Stimulation C: Sham Stimulation Duration: Not specified	E2 vs C Fugl-Meyer Assessment: (-) Stroke Impairment Assessment Set (-) Modified Ashworth Scale (+exp ₂) Grip Strength (-)
Askin et al. (2017) RCT (7) Nstart =40 Nend =40 TPS=Chronic Gu et al. (2017)	E: Low frequency (1Hz) Repetitive Transcranial Magnetic Stimulation to unaffected hemisphere C: Conventional Physical Therapy Duration: 1 hr/d, 5d/wk, for 2wk E: High frequebcy rTMS	Box and Block Test (+exp) Functional Independence Measure (+exp) Brunnstrom Recovery Stages (-) Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) E1 vs E2 vs C
RCT (9) N _{start} = 24 N _{end} = 24 TPS= Chronic	C: Low frequency rTMS Duration: 5d/wk, 2wks (1000 pulses)	Motricity Index: (-) Modified Brunnstrom Classification: (-)
Meng & Song (2017) RCT (6) N _{Start} =20 N _{End} =20 TPS=NR	E: Low Frequency (1Hz) Repetitive Transcranial Magnetic Stimulation to unaffected hemisphere C: Sham Repetitive Transcranial Magnetic Stimulation Duration: 30 min/d, 7d/wk for 2wk	National Institute of Health Stroke Scale (+exp) Barthel Index (+exp) Fugl-Meyer Assessment (+exp)
Ozkeskin et al. (2017) RCT (9) N _{Start} =21 N _{End} =21 TPS=Chronic	E: Low frequency (1Hz) Repetitive Transcranial Magnetic Stimulation to unaffected hemisphere C: Sham Repetitive Transcranial Magnetic Stimulation Duration: 90 min/d, 5d/wk for 2wk	 Brunnstrom Recovery Stages (-) Finger Touch Localization (-) Modified Ashworth Scale (-) Wrist Proprioceptive Evaluations (+exp)
Cha et al. (2016) RCT (9) N _{start} = 30 N _{end} = 30 TPS= Subacute	E: Low frequency rTMS C: Sham Duration: 20min rTMS, 30min conventional therapy	Box and Block Test (+exp) Grip strength (-)
Du et al. (2016) RCT (7) N _{Start} =69 N _{End} =59 TPS=Acute	E1: High frequency (3Hz) rTMS E2: Low frequency (1Hz) rTMS C: Sham rTMS Duration: 30min/d, 5d/wk for 1wk	E2 vs C Fugl-Meyer Assessment (+exp ₂) Medical Research Council Score (+exp ₂) National Institute of Health Stroke Scale (+exp ₂) Modified Rankin Scale (+exp ₂) Barthel Index (+exp ₂)
Li et al. (2016) RCT (7) N _{Start} =127 N _{End} =127 TPS=Subacute	E1: Low frequency (1Hz) rTMS E2: High frequency (10Hz) rTMS C: Sham Duration: 40min/d, 5d/wk for 2wk	E1 vs C Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (-)
Ludemann-Podubecka et al. (2016) RCT (7) N _{Start} =10 N _{End} =10 TPS=Subacute	E: Low frequency (1Hz) rTMS C: Sham Duration: 30min/d, 5d/wk for 6wk	Jebsen Taylor Hand Function Test (+exp) Box and Block Test (-)
Blesneag et al. (2015) RCT (6) N _{start} = 16 N _{end} = 16 TPS= Acute	E: Low frequency rTMS C: Sham Duration: 10 consecutive sessions (20min/5x/2wk)	Fugl-Meyer Assessment Upper Extremity: (-)
Cassidy et al. (2015) RCT (7) Nstart =11 NEnd =11 TPS=Chronic	E1: High frequency (6Hz) rTMS E2: Low frequency (1Hz) rTMS C: Sham Duration: 1hr/d, 3d/wk for 5wk	E2 vs. C Box and Block Test (+exp ₂)

Ludemann-Podubecka et al. (2015) RCT (7) Nstart =40 NEnd =33 TPS=Chronic	E: Low frequency (1Hz) rTMS C: Sham Duration: 30min/d, 5d/wk for 6 wk	Wolf Motor Function Test (+exp) Motor Evaluation Scale (+exp) Finger Tapping (-)
Matsuura et al. (2015) RCT (8) N _{start} = 20 N _{end} = 20 TPS= Acute	E: Low frequency rTMS C: Sham Duration: 20min/d, 5 consecutive days	 Fugl-Meyer Assessment Upper Extremity: (+exp) Purdue Pegboard Test: (+exp) Grip Strength: (-)
Abo et al. (2014) RCT (7) NStart=66 NEnd=66 TPS=Chronic	E: Low frequency (1Hz) rTMS + OT training (NEURO) C: CIMT Duration: 20min rTMS & 120min OT (2x/d), 6d/wk for 4wk	Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp)
Barros Galvao et al. (2014) RCT (8) N _{Start} =20 N _{End} =18 TPS=Chronic	E: Low frequency (1Hz) rTMS C: Sham Duration: 1hr/d, 5d/wk for 2wk	 Modified Ashworth Scale (-) Fugl-Meyer Assessment (-) Functional Independence Measure (-) Wrist range of motion (-)
Rose et al. (2014) RCT (5) Nstart=22 NEnd=19 TPS=Chronic	E: Low frequency (1Hz) rTMS + functional task practice (FTP) C: Sham + FTP Duration: 1.5hr/d, 4d/wk, 4wk	Wolf Motor Function Test (-) Pinch strength (lateral and palmar) (-) Fugl-Meyer Assessment (-) Action Research Arm Test (-) Modified Ashworth Scale (-) Motor Activity Log (-)
Wang et al. (2014) RCT (9) NStart=44 NEnd=44 TPS=Chronic	E1: Low frequency (1Hz) rTMS applied to primary motor cortex E2: Low frequency (1Hz) rTMS applied to premotor area C: Sham Duration: Not Specified	E1 vs C Wolf Motor Function Test (+exp) Fugl-Meyer Assessment (+exp) Medical Research Council Scale (+exp) E2 vs C Wolf Motor Function Test: (+exp ₂) Fugl-Meyer Assessment: (+exp ₂) Medical Research Council Scale (+exp ₂) E1 vs E2 Wolf Motor Function Test (+exp) Fugl-Meyer Assessment (+exp) Medical Research Council Scale (+exp)
Etoh et al. 2013 RCT Crossover (7) N _{Start} =18 N _{End} =18 TPS=Chronic	E1: Low frequency (1Hz) rTMS C: Sham rTMS Duration: 4min, 5d/wk for 2wk	 Action Research Arm Test (+exp) Fugl Meyer Assessment (-) Simple test for evaluating hand function (-) Modified Ashworth scale (-)
Higgins et al. (2013) RCT (7) NStart=11 NEnd=11 TPS=Chronic	E: Low frequency (1Hz) rTMS C: Sham Duration: 90min/d, 4d/wk for 4wk	Box and Block Test (-) Motor Acitivity Log (-) Wolf Motor Function Test (-)
Sasaki et al. (2013) RCT (8) NStart=29 NEnd=29 TPS=Acute	E1: High frequency (10Hz) rTMS E2: 1Hz rTMS non-lesioned hemisphere C: Sham Duration: 45min/d, 2d/wk for 6wk	E2 vs C Grip strength (-) Tapping frequency (-)
Conforto et al. (2012) RCT (6) N _{start} =29 N _{end} =28 TPS=Acute	E: Low frequency (1Hz) rTMS C: Sham Duration: 25min/d, 5d/wk for 4wk	 Jebsen-Taylor Hand Function test (+exp) Pinch Force (+exp) Fugl-Meyer Assessment (+exp) Modified Ashworth Scale (-)
<u>Seniów et al</u> . (2012) RCT (8)	E: Low frequency (1Hz) rTMS + PT C: Sham + PT	Wolf Motor Function Test (-)Fugl-Meyer Assessment (-)

		1
N _{start} =40	Duration: 75min/d, 5d/wk for 3wk	
N _{end} =33		
TPS=Chronic		
Emara et al. (2010)	E1: High frequency (5Hz) rTMS	E2 vs C
RCT (7)	E2: Low frequency (1Hz) rTMS	Finger tapping test (+exp ₂)
N _{start} =60	C: Sham	 Frenchay Activities Index (+exp₂)
Nend=60	Duration: 30min/d, 5d/wk for 4wk	 Modified Rankin Scale (+exp₂)
TPS=Subacute		
Khedr et al. (2009)	E1: Low frequency (1Hz) rTMS	E1 vs C
RCT (8)	E2: High frequency (3Hz) rTMS	Grip strength (+exp)
N _{start} =36	C: Sham	Purdue Pegboard task (+exp)
N _{end} =36	Duration: 30min/d, 3d/wk for 4wk	Barthel Index (+exp)
TPS=Acute		NIHSS (+exp)
Takeuchi et al. (2008)	E: Low frequency (1Hz) rTMS + pinch	Pinch force (+exp)
RCT (7)	force motor training	
N _{start} =20	C: Sham + pinch force motor training	
N _{end} =20	Duration: Not Specified	
TPS=Chronic		
Liepert et al. (2007)	E: Low frequency (1Hz) rTMS	Grip strength (-)
RCT (7)	C: Sham	9-hole peg test (+exp)
N _{start} =12	Duration: 3hr/d, 3d/wk for 4wk	
N _{end} =12		
TPS=Acute	(
Pomeroy et al. (2007)	E1: Low frequency (0.5Hz) rTMS +	Flexion/extension torque (-)
RCT (8)	voluntary muscle contraction (VMC)	Action Research Arm Test (-)
N _{start} =27	E2: Low frequency (0.5Hz) rTMS +	
N _{end} =24	placebo VMC	
TPS=Chronic	E3: Sham rTMS + VMC	
	C: Sham rTMS + placebo VMC	
	Duration: Not Specified	
Fregni et al. (2006)	E: Low frequency (1Hz) rTMS	 Jebsen-Taylor Hand Function test (+exp)
RCT (7)	C: Sham	
N _{start} =15	Duration: 20min/d, 5d/wk for 6wk	
N _{end} =15		
TPS=Chronic		
Mansur et al. (2005)	E: Low frequency (1Hz) rTMS	Finger tapping test (-)
RCT (4)	C: Sham	Perdue Pegboard test (+exp)
N _{start} =10	Duration: Not Specified	
N _{end} =10		
TPS=Chronic		
Takeuchi et al. (2005)	E: Low frequency (1Hz) rTMS	Hand and pinch force (-)
RCT (6)	C: Sham	
N _{start} =20	Duration: 25min/d, 3d/wk for 5wk	
N _{end} =20		
TPS=Chronic	<u> </u>	
	High frequency (>1Hz) rTMS vs Sham	or conventional therapy
Du et al. (2019)	E1: High frequency (rTMS)	E1 Vs C
RCT (9)	E2: Low frequency (TMS)	Fugl-Meyers Upper Extremity: (+exp1)
N _{start} = 60	C: Sham	- 1 agi moyoro oppor Extremitly. (TEXPT)
N _{end} = 44	Duration: 5 consecutive days	<u>E2 Vs C</u>
TPS= Acute	(~22min)	Fugl-Meyers Upper Extremity: (+exp2)
5- / 10410	()	. ag. mayora appor Extramity. (10xp2)
		E1 Vs E2
		Fugl-Meyers Upper Extremity: (-)
Gu et al. (2017)	E: High frequebcy rTMS	E1 vs E2 vs C
RCT (9)	C: Low frequency rTMS	Motricity Index: (-)
N _{start} = 24	Duration: 5d/wk, 2wks (1000 pulses)	Modified Brunnstrom Classification: (-)
Nend= 24	Daration. od Mr., 2000 (1000 pulses)	- Modified Brannonom Oracomoducin. ()
TPS= Chronic		
1 5 - 5 5		

Signate al. (2017)	0 1 (0017)	TE 11: 1 ((511.) B. (6)	
C. Sham Repetitive Transcranial Magnetic Stimulation	Guan et al. (2017)	E: High frequency (5Hz) Repetitive	National Institutes of Health Stroke Scale (+exp) Raythel Index (+exp)
Magnetic Stimulation	* *		
Duration: 25 min/d. 4d/wk for 6wk SCT (7) E1: High frequency (3Hz) rTMS E1 vs.C Sham rTMS Subscuite E1: High frequency (3Hz) rTMS Subscuite E1: Low frequency (1Hz) rTMS Subscuite E1: Low frequency (5Hz) rTMS Subscuite E1: Low frequency (1Hz) rTMS Subscuite Subs			
Dut et al. (2016) E1: High frequency (3Hz) rTMS C2: Low frequency (3Hz) rTMS C3: Amar			()
FCT (7)	Du et al. (2016)		E1 vs C
National Institute of Health Stroke Scale (+exp)			Fugl-Meyer Assessment (-)
Modified Rankin Scale (+exp)			
Barthell Index (+exp)		Duration: 30min/d, 5d/wk for 1wk	National Institute of Health Stroke Scale (+exp)
Hosomi et al. (2016) C. Sham Duration: 1hr/d, 5d/wk for 2wk	TPS=Acute	·	
Fight Figh			Barthel Index (+exp)
Name = 41 Name = 41 Name = 41 Name = 41 Name = 42 Nam		E: High frequency (5Hz) rTMS	Brunnstorm Recovery Stages (-)
Serie	RCT (8)		
TPS=Subacute		Duration: 1hr/d, 5d/wk for 2wk	
Liet al. (2016) E1: Low frequency (10Hz) rTMS E2: High frequency (10Hz) rTMS C: Sharm Duration: 40min/d, 5d/wk for 2wk			Grip Power (-)
RCT (7)			
N _{Sunt} = 127 TPS=Subacute Kim (2014) RCT (6) N _{Sunt} =31 N _{Erd} =3			
Name	` '		
TPS=Subacute Kim (2014) RCT (6) NS _{min} =31 PS=Chronic Kwon et al. (2014) RCT (7) N _{Smin} =14 N _{Smin} =14 PS= Chronic RD (PCM) motor training E2: 10 Hz (high freq) rTMS and preconditioned combination method (ICM) motor training C1 (N) N _{Smin} =14 PS= Chronic RD (PCM) motor training (standard) C1 (N) Duration: 20 min/session, 2 sessions total: 1 session per condition (washout period 48 hours RD (PCM) motor training (standard) C1 (N) Duration: 20 min/session, 2 sessions total: 1 session per condition (washout period 48 hours RD (PCM) motor training (standard) C1 (N) C1 (N) Duration: 20 min/session, 2 sessions total: 1 session per condition (washout period 48 hours RD (PCM) motor training (standard) C1 (N) Duration: 20 min/session, 2 sessions total: 1 session per condition (washout period 48 hours RD (PCM) motor training (standard) C1 (N) Movement Accuracy (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Nine-Hole Pe			Wolf Motor Function Test (-)
C: High frequency (10Hz) rTMS C: Sham Duration: 10min/d, 5d/wk for 4wk Nam=29 Nam=29 Nam=28 TPS=Acute Duration: 20min/d, 2d/wk for 6wk E: High frequency (10Hz) rTMS Sham=28 TPS=Chronic E: High frequency (10Hz) rTMS and Interleaved combination method (ICM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours E1: 10Hz rTMS lesioned hemisphere E2: 11Hz rTMS lesioned hemisphere E2: 11Hz rTMS lesioned hemisphere C: Sham Duration: 2min/d, 2d/wk for 6wk Ei: High frequency (10Hz) rTMS Man=28 TPS=Subacute E1: SHz rTMS Sez: 11Hz rTMS S		Duration: 40min/d, 5d/wk for 2wk	
RCT (6) C: Sham Duration: 10min/d, 5d/wk for 4wk N _{Smrt=3} 1 PS=Chronic			
Name-31 TPS=Chronic E: 10 Hz (high freq) rTMS and Interleaved combination method (ICM) wotor training E: 10 Hz (high freq) rTMS and Interleaved combination method (ICM) wotor training E: 10 Hz (high freq) rTMS and Preconditioned combination method (ICM) wotor training E: 10 Hz (high freq) rTMS and Preconditioned combination method (PCM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours E2 y S C Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task): (+exp2) Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task): (+exp2) Movement Accuracy (Sequential Finger Motor Task): (+exp2) Movement Time (Sequential Finger Motor Task): (+exp2) Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task): (+exp2) Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task): (+exp2) Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task): (-) Movement Time (Sequential Finger Motor Task): (-) Movement Accuracy (Sequential Finger Motor Task): (-) Movement Time (Sequential		E: High frequency (10Hz) rTMS	Manual Function Test (+exp)
NE _{cott} =31 TPS=Chronic	` '		
TPS=Chronic Kwon et al. (2014) RCT (7) N _{stant} = 14 N _{end} = 14 TPS= Chronic E: 10 Hz (high freq) rTMS and Interleaved combination method (ICM) motor training E2: 10 Hz (high freq) rTMS and Preconditioned combination method (ICM) motor training C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours E1: 10Hz (high freq) rTMS and Interleaved combination method (ICM) motor training C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours E2 ys C Purdue Pegboard Test: (-) Movement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Nine-Hole Peg Tes		Duration: 10min/d, 5d/wk for 4wk	
Kwon et al. (2014) RCT (7) Interleaved combination method (ICM) motor training E2: 10 Hz (high freq) rTMS and Preconditioned combination method (ICM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Purdue Pegboard Test: (-) Movement Accuracy (Sequential Finger Motor Task) (-) E2 Vs C Wovement Accuracy (Sequential Finger Motor Task) (-) Purdue Pegboard Test: (-) Movement Accuracy (Sequential Finger Motor Task) (-) E2 Vs C Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Movement Accuracy (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Movement Accuracy (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Movement Accuracy (Sequential Finger Motor Task) (-) Novement Accuracy (Sequential Finger Motor			
Interleaved combination method (ICM) Nation=14 Nine-Hole Peg Test: (-) Nine-Hole Peg Tes			
N _{Start} = 14 N _{end} = 14 TPS= Chronic motor training E2: 10 Hz (high freq) rTMS and Preconditioned combination method (PCM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours • Mine-Hole Peg Test: (-) • Movement Accuracy (Sequential Finger Motor Task) (-) • E2 Vs C • Purdue Pegboard Test: (-) • Mine-Hole Peg Test: (-) • Movement Time (Sequential Finger Motor Task): (+exp2) • Movement Accuracy (Sequential Finger Motor Task): (+exp2) • Movement Time (Sequential Finger Motor Task): (-) • Movement Accuracy (Sequential Finger Motor Task): (-) • Movement Accuracy (Sequential Finger Motor Task) (-) • Movement Accuracy (Sequential Finger Motor Task) (-) • Movement Time (Sequential Finger Motor Task): (+exp2) • Movement Time (Sequential Finger Motor Task): (-) • Movement Time (Sequential Fing			
Nexid= 14 TPS= Chronic E2: 10 Hz (high freq) rTMS and Preconditioned combination method (PCM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Movement Accuracy (Sequential Finger Motor Task) (-) E2 Vs C Novement Time (Sequential Finger Motor Task) (-) E2 Vs C Novement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Novement Accuracy (Sequential Finger Motor Task) (-) Novement Time (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Novement Accuracy (Sequential Finger Motor Task): (-) Novement Time (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Novement Accuracy (Sequential Finger Motor Task): (-) Novement Time (Sequential Finger Mo			Purdue Pegboard Test: (-)
Preconditioned combination method (PCM) motor training (standard) C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Procondition (washout period 48 hours Procondition (washout period 48 hours Procondition (washout period 48 hours Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task): (+exp2) Purdue Pegboard Test: (-) Novement Accuracy (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task) (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task) (
CPCM) motor training (standard)			
C: N/A Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Task) (-) Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task): (+exp2) E1 vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Movement Accuracy (Sequential Finger Motor Task): (+exp2) E1 vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Mo	TPS= Chronic		
Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Duration: 20 min/session, 2 sessions total; 1 session per condition (washout period 48 hours Nine-Hole Peg Test: (-)			* ' '
total; 1 session per condition (washout period 48 hours Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task): (+exp2) Movement Accuracy (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Novement Accuracy (Sequential Finger Motor Task): (+exp2) E1 Vs E2 Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Nine-Hole Peg Test: (-) Novement Time (Sequential Finger Motor Task) (-) Novement Time (Sequential Finger Motor Task) (-) Novement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Novement Time (Sequential Finger Motor Task) (-) Novement Accuracy (Sequential Finger Motor Task) (-) Novement Time (Sequent			
Nine-Hole Peg Test: (-)			
- Movement Time (Sequential Finger Motor Task): (+exp2) - Movement Accuracy (Sequential Finger Motor Task): (+exp2) - E1 ∨s E2 - Purdue Pegboard Test: (-) - Nine-Hole Peg Test: (-) - Nine-Hole Peg Test: (-) - Movement Accuracy (Sequential Finger Motor Task) (-) - Movement Time (Sequential Finger Motor Task) (-) - Movement Accuracy (Sequential Finger Motor Task) (-) - Movement Accuracy (Sequential Finger Motor Task) (-) - Movement Time (Sequential Finger Motor Task) (-) - Movement Accuracy (Sequential Finger Motor Task) (-) - Finger tapping test (+exp) - Finger tapping			
C+exp2		period 46 flours	
Movement Accuracy (Sequential Finger Motor Task): (+exp2)			, ,
Task): (+exp2)			
E1 Vs E2			
Purdue Pegboard Test: (-) Nine-Hole Peg Test: (-) Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) E1: 10Hz rTMS lesioned hemisphere RCT (8) RCT (8) RStar=29 Hemisphere C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) RCT (5) C: Sham Duration: 2min, 5d/wk for 2wk Rend=28 TPS=Subacute Emara et al. (2010) RCT (7) RCT (7) RCT (7) RCT (7) RCT (8) RCT (8) RCT (8) RCT (9) RCT (10) R			
Nine-Hole Peg Test: (-) Movement Time (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Sasaki et al. (2010 Cisham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) Eli ship frequency (10Hz) rTMS Motricity Index (+exp) Fugl-Meyer Assessment (-) Fugl-Meyer Asses			
Movement Time (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Accuracy (Sequential Finger Motor Task) (-) Movement Time (Sequential Finger Motor Task) (-) Sequential Finger Motor Task) (-) Grip strength (+exp) Motricity Index (+exp) Finger Assessment (-) Finger Assessment (-) Sequential Finger Motor Task) (-) Sequential Finger Motor Task) (-) Grip strength (+exp) Motricity Index (+exp) Finger Assessment (-)			
(-) Movement Accuracy (Sequential Finger Motor Task) (-) Sasaki et al. (2013) RCT (8) Nstart=29 Nend=29 TPS=Acute C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) RCT (5) Nstart=28 Nend=28 TPS=Subacute Emara et al. (2010) RCT (7) Nstart=60 RCT (7) Nstart=60 Nend=60 (-) Movement Accuracy (Sequential Finger Motor Task) (-) E1 vs C Grip strength (+exp) Tapping frequency (+exp) Motricity Index (+exp) Fugl-Meyer Assessment (-) Fugl-Meyer Assessment (-) E1 vs C Motricity Index (+exp) Fugl-Meyer Assessment (-) E1 vs C Finger tapping test (+exp) Frenchay Activities Index (+exp) Frenchay Activities Index (+exp) Modified Rankin Scale (+exp)			
 Movement Accuracy (Sequential Finger Motor Task) (-) Sasaki et al. (2013) RCT (8) NStart=29 NEnd=29 TPS=Acute C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) RCT (5) Nstart=28 Nend=28 TPS=Subacute Ei High frequency (10Hz) rTMS C: Sham Duration: 2min, 5d/wk for 2wk Emara et al. (2010) RCT (7) Nstart=60 Nstart=60 Nend=60 Duration: 30min/d, 5d/wk for 4wk Movement Accuracy (Sequential Finger Motor Task) (-) E1 vs C Finger tapping test (+exp) Frenchay Activities Index (+exp) Modified Rankin Scale (+exp) Modified Rankin Scale (+exp) 			
Task (-)			
Sasaki et al. (2013) E1: 10Hz rTMS lesioned hemisphere E1 vs C RCT (8) E2: 1Hz rTMS non-lesioned hemisphere • Grip strength (+exp) Nstart=29 hemisphere • Tapping frequency (+exp) Nstart=29 C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) E: High frequency (10Hz) rTMS • Motricity Index (+exp) RCT (5) C: Sham • Fugl-Meyer Assessment (-) Nstart=28 Duration: 2min, 5d/wk for 2wk • Fugl-Meyer Assessment (-) Nend=28 TPS=Subacute E1: 5Hz rTMS E1 vs C Emara et al. (2010) E1: 5Hz rTMS • Finger tapping test (+exp) RCT (7) E2: 1Hz rTMS • Frenchay Activities Index (+exp) Nstart=60 C: Sham • Frenchay Activities Index (+exp) Nend=60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			• , ,
RCT (8) Nstart=29 Nend=29 TPS=Acute C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) RCT (5) Nstart=28 Nend=28 TPS=Subacute Emara et al. (2010) RCT (7) Nstart=60 Nend=60 RCT (8) E2: 1Hz rTMS non-lesioned hemisphere C: Sham Duration: 45min/d, 2d/wk for 6wk E: High frequency (10Hz) rTMS C: Sham Duration: 2min, 5d/wk for 2wk E1: 5Hz rTMS E2: 1Hz rTMS E2: 1Hz rTMS Finger tapping test (+exp) Frenchay Activities Index (+exp) Frenchay Activities Index (+exp) Modified Rankin Scale (+exp) Modified Rankin Scale (+exp)	Sasaki et al. (2013)	E1: 10Hz rTMS lesioned hemisphere	
Nstart=29 NEnd=29 TPS=Acute Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) RCT (5) Nstart=28 Nend=28 TPS=Subacute Emara et al. (2010) RCT (7) Nstart=60 Nend=60 Remisphere C: Sham Duration: 45min/d, 2d/wk for 6wk • Motricity Index (+exp) • Fugl-Meyer Assessment (-) • Fugl-Meyer Assessment (-) • Finger tapping test (+exp) • Frenchay Activities Index (+exp) • Frenchay Activities Index (+exp) • Modified Rankin Scale (+exp)			
NEnd=29 C: Sham Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) E: High frequency (10Hz) rTMS • Motricity Index (+exp) RCT (5) C: Sham • Fugl-Meyer Assessment (-) N _{start} =28 Duration: 2min, 5d/wk for 2wk N _{end} =28 TPS=Subacute E1: 5Hz rTMS Emara et al. (2010) E1: 5Hz rTMS • Finger tapping test (+exp) RCT (7) E2: 1Hz rTMS • Frenchay Activities Index (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			
TPS=Acute Duration: 45min/d, 2d/wk for 6wk Chang et al. (2010) E: High frequency (10Hz) rTMS • Motricity Index (+exp) RCT (5) C: Sham • Fugl-Meyer Assessment (-) N _{start} =28 Duration: 2min, 5d/wk for 2wk • Fugl-Meyer Assessment (-) N _{end} =28 TPS=Subacute E1: 5Hz rTMS E1: 5Hz rTMS RCT (7) E2: 1Hz rTMS • Finger tapping test (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			7FF2 10) (0)
Chang et al. (2010) E: High frequency (10Hz) rTMS • Motricity Index (+exp) RCT (5) C: Sham • Fugl-Meyer Assessment (-) N _{start} =28 Duration: 2min, 5d/wk for 2wk PS=Subacute E1: 5Hz rTMS E1: 5Hz rTMS RCT (7) E2: 1Hz rTMS • Finger tapping test (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			
RCT (5) C: Sham • Fugl-Meyer Assessment (-) N _{start} =28 Duration: 2min, 5d/wk for 2wk N _{end} =28 TPS=Subacute Emara et al. (2010) E1: 5Hz rTMS RCT (7) E2: 1Hz rTMS N _{start} =60 C: Sham N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp) • Modified Rankin Scale (+exp)			Motricity Index (+exp)
N _{start} =28 Duration: 2min, 5d/wk for 2wk N _{end} =28 TPS=Subacute Emara et al. (2010) E1: 5Hz rTMS RCT (7) E2: 1Hz rTMS N _{start} =60 C: Sham N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp) • Modified Rankin Scale (+exp)			
Nend=28 TPS=Subacute E1: 5Hz rTMS E1 vs C Emara et al. (2010) E1: 5Hz rTMS • Finger tapping test (+exp) RCT (7) E2: 1Hz rTMS • Frenchay Activities Index (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			
TPS=Subacute Enara et al. (2010) E1: 5Hz rTMS E1 vs C RCT (7) E2: 1Hz rTMS • Finger tapping test (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)		·	
Emara et al. (2010) E1: 5Hz rTMS E1 vs C RCT (7) E2: 1Hz rTMS • Finger tapping test (+exp) N _{start} =60 C: Sham • Frenchay Activities Index (+exp) N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			
RCT (7) N _{start} =60 N _{end} =60 E2: 1Hz rTMS C: Sham Duration: 30min/d, 5d/wk for 4wk • Finger tapping test (+exp) • Frenchay Activities Index (+exp) • Modified Rankin Scale (+exp)		E1: 5Hz rTMS	E1 vs C
N _{start} =60 C: Sham • Frenchay Activities Index (+exp) • Modified Rankin Scale (+exp)			
N _{end} =60 Duration: 30min/d, 5d/wk for 4wk • Modified Rankin Scale (+exp)			
		· ·	· ''

Khedr et al. (2010)	E1: 3Hz rTMS	E1/E2 vs C
RCT (8)	E2: 10Hz rTMS	• Grip strength (+exp, +exp ₂)
N _{start} =48	C: Sham	NIHSS (+exp, +exp ₂)
N _{end} =38	Duration: 30min/d, 3d/wk for 4wk	Modified Rankin Scale (+exp, +exp ₂)
TPS=Acute	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	E1 vs E2
Tr C=7 touto		• Grip strength (-)
		NIHSS (-)
		Modified Rankin Scale (-)
Khadratal (2000)	E4. 4H= *TMC	
Khedr et al. (2009)	E1: 1Hz rTMS	E2 vs C
RCT (8)	E2: 3Hz rTMS	Grip strength (+exp ₂)
N _{start} =36	C: Sham	 Purdue Pegboard task (+exp₂)
N _{end} =36	Duration: 30min/d, 3d/wk for 4wk	Barthel Index (+exp ₂)
TPS=Acute		NIHSS (+exp ₂)
Malcolm et al. (2007)	E: High frequency (20Hz) rTMS	Wolf Motor Function Test (-)
RCT (6)	C: Sham	Motor Activity Log (-)
N _{start} =19	Duration: 40min/d, 6d/wk for 5wk	
N _{end} =19		
TPS=Chronic		
Khedr et al. (2005)	E: High frequency (3Hz) rTMS	Barthel Index (+exp)
RCT (6)	C: Sham	NIHSS (+exp)
N _{start} =52	Duration: 45min/d, 5d/wk, 2wk	Scandinavian Stroke Impact Scale (+exp)
N _{end} =52		
TPS=Acute		
	ombined with high frequency rTMS or le	ow frequency versus high frequency rTMS
Long et al. (2018)	E1: Low Frequency Combined with	E1 vs C
RCT (7)	High Frequency Repetitive	Fugl-Meyer Assessment (+exp)
N _{Start} =62	Transcranial Magnetic Stimulation	Wolf Motor Function Test (+exp)
N _{End} =62	E2: Low Frequency Repetitive	E1 vs E2
TPS=Acute	Transcranial Magnetic Stimulation	Fugl-Meyer Assessment (-)
	C: Sham Repetitive Transcranial	Wolf Motor Function Test (+exp)
	Magnetic Stimulation	
	Duration: Not Specified	
Takeuchi et al. (2009)	E1: Bilateral (dual) rTMS (1Hz and	E1 vs E2
RCT (6)	10Hz)	Pinch force (+exp)
N _{start} =30	E2: 10Hz rTMS	E1 vs E3
Nend=30	E3: 1Hz rTMS	• Pinch force (+exp)
TPS=Chronic	Duration: 15min/d, 3d/wk for 5wk	τ πιοιποιός (τοχρ)
11 0-01101110	rTMS plus NMES comapa	red to rTMS
Etoh et al. (2019)	E: Low frequency rTMS + NMES	Fugl-Meyers Assessment Upper Extremity: (-)
RCT (8)	C: Sham + low frequency rTMS	Action Research Arm Test: (-)
N _{start} = 20	Duration: 10min, 5d/wk, 4wks	Box and Block Test: (+exp)
N _{end} = 20		Modified Ashworth Scale:
TPS= Chronic		• Elbow: (-)
		• Wrist: (-)
		• Finger: (-)
Tosun et al. (2017)	E1: Low Frequency (1Hz) Repetitive	E1/E2 vs C; E1 vs E2
RCT (7)		• Fugl-Meyer Assessment (-)
. ,	Transcranial Magnetic Stimulation	
N _{Start} =25	E2: Low Frequency Repetitive	Motricity Index (-) Prupatrom Passivery Stages (-)
N _{End} =25	Transcranial with Cyclic NMES	Brunnstrom Recovery Stages (-) Medified Ashyroth Scale (-)
TPS=Subacute	C: Physical Therapy	Modified Ashworth Scale (-) Best half and the description.
	Duration: 1 hr/d, 5d/wk for 4wk	Barthel Index (-)
	rTMS plus additional into	-
Noh et al. (2019)	E: Low frequency rTMS + Action	Brunstomm Recovery Stages
RCT (7)	Observation	Proximal: (-)
N _{start} = 22	C: Low frequency rTMS	• Distal: (-)
N _{end} = 22	Duration: 20min each, 5x/wk, 2wks	Fugl-Meyers Assessment: (-)
TPS= Acute/subacute		Manual Function Test (-)
		Proximal: (-)
		Distal: (-)
		Grip Power Test: (-)
	•	

Pan et al. (2019) RCT (7) N _{start} = 44 N _{end} = 42 TPS= subacute Cho et al. (2017)	E: Low frequency rTMS + mental practice C: Low frequency rTMS Duration: 30min, 5d/wk, 2wks E: High frequency rTMS + cathodal	Wolf Motor Function Test: (+exp) Fugl-Meyer Assessment Upper Extremity: (+exp) Modified Barthel Index: (+exp) Box and Block Test: (+exp) Fugle Meyers Assessment: (+exp)
RCT (6) N _{start} = 30 N _{end} = 30 TPS= Acute	tCDS C: High frequency rTMS Duration: 20min, 5x/wk for 2wks	
Yang et al. (2017) RCT (8) NStart =60 NEnd =60 TPS=Subacute	E1: Low frequency (1Hz) Repetitive Transcranial Magnetic Stimulation with Sensory Cueing E2: Low frequency (1Hz) Repetitive Transcranial Magnetic Stimulation C: Conventional Therapy Duration: 45 min/d, 5d/wk for 4wk	E1 vs C Fugl-Meyer Assessment (-) Action Research Arm Test (-) Modified Barthel Index (-) E2 vs C Fugl-Meyer Assessment (-) Action Research Arm Test (-) Modified Barthel Index (-) E1 vs E2 Fugl-Meyer Assessment (-) Action Research Arm Test (-) Modified Barthel Index (-) Modified Barthel Index (-)
Zheng et al. (2015) RCT (7) NStart=112 NEnd=108 TPS=Chronic	E: Low frequency (1Hz) rTMS + virtual reality (VR) training C: Sham + VR training Duration: 45min/d, 6d/wk for 4wk	 Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp) Modified Barthel Index (+exp)
Ji et al. (2014) RCT (7) N _{Start} =35 N _{End} =35 TPS=Chronic	E1: Mirror therapy + high frequency (10Hz) rTMS E2: Mirror therapy C: Sham Duration: 15 min/d, 6d/wk for 4wk	E1 vs E2 Fugl-Meyer Assessment (+exp) Box and Block Test (+exp) E1 vs C Fugl-Meyer Assessment (+exp) Box and Block Test (+exp)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about rTMS

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Low frequency rTMS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving motor function.	27	Du et al. 2019; El-Tamaway et al. 2019; Harvey et al. 2018; Long et al. 2018; Tarri et al. 2018; Watanabe et al. 2018; Askin et al. 2017; Gu et al. 2017; Meng and Song, 2017; Ozkesin et al. 2017; Tosun et al. 2017; Yang et al. 2017; Du et al. 2016; Li et al. 2016; Blesneag et al. 2015; Ludermann-Podubecka et al. 2015; Abo et al. 2014; Barros Galvao et al. 2014; Rose et al. 2014; Wang et al. 2014; Etoh et al. 2013; Higgins et al. 2013; Conforto et al. 2012; Seniow et al. 2012; Seniow et al. 2007; Fregni et al. 2006

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group - indicates no statistically significant between groups differences at α =0.05

1a	High frequency rTMS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving motor function.	9	Du et al. 2019; Gu et al. 2017; Guan et al. 2017; Du et al. 2016; Hosomi et al. 2016; Li et al. 2016; Kim et al. 2014; Chang et al. 2010; Malcom et al. 2007
1b	There is conflicting evidence about the effect of bilateral rTMS stimulation (both high and low frequency) to improve motor function when compared to sham stimulation or conventional therapy.	1	Long et al. 2018
1b	Low frequency rTMS with sensory cueing may not have a difference in efficacy when compared to low frequency rTMS or sham stimulation for improving motor function.	1	Yang et al. 2017
1b	Low frequency rTMS combined with virtual reality training may produce greater improvements in motor function than virtual reality training on its own or sham stimulation combined with virtual reality.	1	Zheng et al. 2015
1b	Mirror therapy combined with high frequency rTMS may produce greater improvements in motor function than mirror therapy on its own or sham stimulation.	1	Ji et al. 2014
1a	Low frequency rTMS with cyclic NMES may not have a difference in efficacy when compared to low frequency rTMS or conventional therapy for improving motor function.	2	Etoh et al. 2019; Tosun et al. 2017
1b	Low frequency rTMS with Action Observation may not have a difference in efficacy when compared to low frequency rTMS for improving motor function.	1	Noh et al. 2019
1b	Mental Practice combined with low frequency rTMS may produce greater improvements in motor function than low frequency rTMS.	1	Pan et al. 2019
1b	tDCS combined with high frequency rTMS may produce greater improvements in motor function than high frequency rTMS.	1	Cho et al. 2017

	DEXTERITY			
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of low frequency rTMS to improve dexterity when compared to sham stimulation or conventional therapy .	13	Cha et al. 2018; Askin et al. 2017; Ozkeskin et al. 2017; Ludermann-Podubecka et al. 2016; Cassidy et al. 2016; Ludermann-Podubecka et al. 2015; Matsuura et al. 2015; Miggins et al. 2013; Saskai et al. 2013; Emara et al. 2010; Khedr et al. 2009; Liepert et al. 2007; Mansur et al. 2005	
1a	High frequency rTMS may produce greater improvements in dexterity than sham stimulation or conventional therapy.	5	Cassidy et al. 2015; Kwon et al. 2014; Saskai et al. 2013; Emara et al. 2010; Khedr et al. 2009	
1b	Mirror therapy combined with high frequency rTMS may produce greater improvements in dexterity than mirror therapy on its own or sham stimulation.	1	Ji et al. 2014	

	Low frequency rTMS with cyclic NMES may not		Etoh et al. 2019
1b	have a difference in efficacy when compared to low frequency rTMS or conventional therapy for	1	
	improving dexterity.		

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	Low frequency rTMS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving spasticity.	9	Dos Santos et al. 2019; Watanabe et al. 2018; Askin et al. 2017; Ozkeskin et al. 2017; Tosun et al. 2017; Barros Galvao et al. 2014; Rose et al. 2014; Etoh et al. 2013; Conforto et al. 2012
1a	Low frequency rTMS with cyclic NMES may not have a difference in efficacy when compared to low frequency rTMS or conventional therapy for improving spasticity.	2	Etoh et al. 2019; Tosun et al. 2017

	RANGE OF MOTION		
LoE Conclusion Statement RCTs Referenc		References	
1a	Low frequency rTMS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving range of motion.	2	Barros Galvao et al. 2014; Pomeroy et al. 2007

	PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References		
1b	Low frequency rTMS may produce greater improvements in proprioception than sham stimulation or conventional therapy.	1	Ozkeskin et al. 2017		

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Low frequency rTMS may produce greater improvements on measures of stroke severity than sham stimulation or conventional therapy.	5	Askin et al. 2017; Meng and Song, 2017; Du et al. 2016; Emara et al. 2010; Khedr et al. 2009	
1a	High frequency rTMS may produce greater improvements on measures of stroke severity than sham stimulation or conventional therapy.	6	Guan et al. 2017; Du et al. 2016; Hosomi et al. 2016; Emara et al. 2010; Khedr et al. 2010; Khedr et al. 2009	
1b	Low frequency rTMS with cyclic NMES may not have a difference in efficacy when compared to low frequency rTMS or conventional therapy for improvements on measures of stroke severity.	1	Tosun et al. 2017	

ACTIVITIES OF DAILY LIVING			
LoE	LoE Conclusion Statement RCTs		References
1a	There is conflicting evidence about the effect of low frequency rTMS to improve performance of activities	9	Askin et al. 2017; Meng and Song, 2017; Tosun et al. 2017; Yang et al. 2017; Du et al. 2016; Barros Galvao et al. 2014; Rose et

	of daily living when compared to sham stimulation or conventional therapy.		al. 2014; Higgins et al. 2013; Emara et al. 2010; Khedr et al. 2009
1a	High frequency rTMS may produce greater improvements in performance of activities of daily living than sham stimulation or conventional therapy.	6	Guan et al. 2017; Du et al. 2016; Emara et al. 2010; Khedr et al. 2009; Malcom et al. 2007; Khedr et al. 2005
1b	Low frequency rTMS with sensory cueing may not have a difference in efficacy when compared to low frequency rTMS or sham stimulation for improving performance of activities of daily living.	1	Yang et al. 2017
1b	Low frequency rTMS combined with virtual reality training may produce greater improvements in performance of activities of daily living than virtual reality training on its own or sham stimulation combined with virtual reality.	1	Zheng et al. 2015
1b	Low frequency rTMS with cyclic NMES may not have a difference in efficacy when compared to low frequency rTMS or conventional therapy for improving performance of activities of daily living.	1	Tosun et al. 2017

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	Low frequency rTMS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving muscle strength.	15	El Tamaway et al. 2019; Cha et al. 2018; Watanabe et al. 2018; Gu et al. 2017; Tosun et al. 2017; Du et al. 2016; Matsuura et al. 2015; Rose et al. 2014; Wang et al. 2014; Saskai et al. 2013; Conforto et al. 2012; Khedr et al. 2009; Takeuchi et al. 2008; Liepert et al. 2007; Takeuchi et al. 2005
1a	There is conflicting evidence about the effect of high frequency rTMS to improve muscle strength when compared to sham stimulation or conventional therapy.	8	Gu et al. 2017; Du et al. 2016; Hosomi et al. 2016; Saskai et al. 2013; Chang et al. 2010; Khedr et al. 2010; Khedr et al. 2009
1a	Bilateral rTMS stimulation (both high and low frequency) may produce greater improvements in muscle strength than low frequency rTMS.	1	Takeuchi et al. 2009
1a	Bilateral rTMS stimulation (both high and low frequency) may produce greater improvements in muscle strength than high frequency rTMS.	1	Takeuchi et al. 2009
1b	Low frequency rTMS with cyclic NMES may not have a difference in efficacy when compared to low frequency rTMS or conventional therapy for improving muscle strength.	1	Tosun et al. 2017
1b	Low frequency rTMS with Action Observation may not have a difference in efficacy when compared to low frequency rTMS for improving muscle strength.	1	Noh et al. 2019
1b	Mental Practice combined with low frequency rTMS may produce greater improvements in muscle strength than low frequency rTMS.	1	Pan et al. 2019

There is conflicting evidence about the benefits of low -frequency rTMS for upper limb rehabilitation following stroke when compared to conventional or sham therapy.

There is conflicting evidence about the benefits of high-frequency rTMS on improving upper limb rehabilitation following stroke when compared to conventional or sham therapy.

Both low- and high-frequency rTMS combined with select other therapies may be beneficial for some aspects of upper limb rehabilitation following stroke.

Theta Burst Stimulation (TBS)

Adopted from: https://www.psychiatryadvisor.com/home/depression-advisor/intermittent-theta-burst-stimulation-for-major-depressive-disorder-treatment/

Theta Burst Stimulation (TBS) is an emerging treatment modality that is a patterned form of rTMS where stimulation pulses are delivered in triplets or bursts at a high frequency (50Hz), and in a short interval (200ms), intending to mimic naturally occurring theta brain oscillations (Schwippel et al. 2019). TBS can also be used to adjust interhemispheric rivalry after a stroke and promote motor recovery through the delivery of continuous TBS (cTBS) to reduce cortical excitability in the contralesional hemisphere (600 pulses over 40 seconds); or intermittent TBS (iTBS) to increase cortical excitability in the ipsilesional hemisphere (600 pulses over 190 seconds) (Schwippel et al. 2019; Cotoi et al. 2019).

A total of 16 RCTs were found that evaluated the use of TBS for upper extremity motor rehabilitation poststroke.

Nine RCTs evaluated the effects of iTBS (Chen et al. 2019; Khan et al. 2019; Watanabe et al. 2018; Ackerley et al. 2016; Volz et al. 2016; Kim et al. 2015; Hsu et al. 2013; Talelli et al. 2012), and five RCTs the effects of cTBS (Nicolo et al. 2018; Di Lazzaro et al. 2016; Ackerley et al. 2014; Di Lazzaro et al. 2014; Talelli et al. 2012; Ackerley et al. 2010. Additionally, two RCTs evaluated the effects of iTBS combined with low frequency rTMS compared to sham TBS/rTMS for improving upper extremity motor rehabilitation outcomes (Meng et al. 2020; Sung et al. 2013), and one RCT exmaned iTBS compared to FES (Khan et al. 2019).

The methodological details and results of all 16 RCTs are presented in Table 29.

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	Intermittent TBS versus sham	stimulation
Chen et al. (2019) RCT (7) Nstart= 23 Nend= 22 TPS= Chronic	E: iTBS C: Sham Duration: ~20min, 5x/wk for 2wks	Modified Ashworth Scale: (+exp) Fugle Meyers Assessment: (+exp) Action Research Arm Test: (+exp) Gross (-) Grasp (+exp) Grip (+exp) Pinch (+exp) Box and Block Test: (+exp) Motor Activity Log: Amount of Use: (-) Quality of Movement: (-)
<u>Watanabe et al.</u> (2018) RCT (5) N _{Start} =21 N _{End} =21 TPS=Acute	E1: Intermittent Theta-Burst Stimulation E2: Low Frequency Repetitive Transcranial Magnetic Stimulation C: Sham Stimulation Duration: Not Specified	E1 vs C: Fugl-Meyer Assessment (-) Stroke Impairment Assessment Set (-) Modified Ashworth Scale (-) Grip Strength (-)
Ackerley et al. (2016) RCT (8) N _{Start} =18 N _{End} =18 TPS=Chronic	E: iTBS C: Sham TBS Duration: 45min/d, 5d/wk for 2wk	Action Research Arm Test (+exp) Fugl-Meyer Assessment (-)
<u>Volz et al.</u> (2016) RCT (5) N _{Start} =26 N _{End} =17 TPS=Acute	E: iTBS C: Sham TBS Duration: Not Specified	 Grip Strength (+exp) Jebsen Taylor Hand Function Test (-)
Kim et al. (2015) RCT (8) N _{Start} =15 N _{End} =15 TPS=Chronic	E: iTBS C: Sham TBS Duration: 30min/d, 3d/wk for 4wk	 Modified Tardieu Scale (+exp) Peak torque (+exp) Modified Ashworth Scale (+exp)
Hsu et al. (2013) RCT (7) N _{start} =12 N _{end} =12 TPS=Subacute	E: iTBS C: Sham Duration: 30min/d, 3d/wk for 3wk	Fugl-Meyer Assessment (+exp) Action Research Arm Test (-)
Talelli et al. (2012) RCT (7) N _{start} =41 N _{end} =41 TPS=Chronic	E: iTBS C: Sham iTBS Duration: 1hr/d, 5d/wk for 2wk	Nine Hole Peg Test (-)Jebsen Taylor Hand test (-)
	Intermittent TBS combined with/	versus rTMS
Meng et al. (2020) RCT (9) N _{start} = 28 N _{end} = 28 TPS= Subacute	E: Low frequency rTMS + intermittent Theta Burst Stimulation E2: Low frequency rTMS + sham C: Sham + sham Duration: 5x/wk, 2wks	E1 Vs C Fugl-Meyers Assessment Upper Extremity: (+exp ₁) Barthel Index: (+exp ₁) E2 vs C Fugl-Meyers Assessment Upper Extremity: (-) Barthel Index: (-)

Sung et al. (2013) RCT (6) Nstart=54 NEnd=54 TPS= Chronic	E1: Low frequency (1Hz) rTMS + iTBS E2: Sham rTMS + iTBS E3: Low frequency (1Hz) rTMS + sham iTBS C: Sham rTMS + sham Itbs Duration: 45min/d, 5d/wk for 4wk Continuous TBS versus iTBS and/o	E1 Vs E2 Fugl-Meyers Assessment Upper Extremity: (+exp ₁) Barthel Index: (+exp ₁) E1/E2/E3 vs C Wolf Motor Function test (+exp ₁ +exp ₂ , +exp ₃) Fugl-Meyer Assessment (+exp ₁ +exp ₂ , +exp ₃) Medical Research Council Scale (+exp ₁ +exp ₂ , +exp ₃) Functional Independence Measure (-) E1 vs E2 Wolf Motor Function test (+exp) Fugl-Meyer Assessment (+exp) Medical Research Council Scale (+exp) Functional Independence Measure (-) E1 vs E3 Wolf Motor Function test (+exp) Fugl-Meyer Assessment (-) Medical Research Council Scale (+exp) Functional Independence Measure (-) E2 vs E3 Wolf Motor Function test (-) Fugl-Meyer Assessment (+exp ₃) Medical Research Council Scale (+exp ₃) Functional Independence Measure (-)
Nicolo et al. (2018) RCT (9) N _{start} = 41 N _{end} = 41 TPS= Subacute	E1: Neuronavigated Continuous Theta Burst Stimulation (TBS) E2: Cathodal -tDCS C: Sham Duration: 30min, 3x/wk, 3wks	E1 Vs C Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Nine Hole Peg Test: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-) E2 Vs C Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Nine Hole Peg Test: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-) E1 Vs E2 Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Nine Hole Peg Test: (-) Motor Activity Log-14 Quantitative Score: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-)
Di Lazzaro et al. (2016) RCT (7) NStart=20 NEnd=17 TPS=Chronic Ackerley et al. (2014) RCT (9) Nstart= 24 Nend=13 TPS= Chronic	E: cTBS + robotic therapy C: Sham TBS + robotic therapy Duration: 1hr/d, 5d/wk for 2wk E: iTBS E2: cTBS C: Sham Duration: single session unspecified length	• Fugl-Meyer Assessment (-) E1 Vs C • Griplift (-) E2 Vs C • Griplift (-) E1 Vs E2 • Griplift Kinetics (-)

Di Lazzaro et al. (2014) RCT (6) N _{Start} =12 N _{End} =12 TPS=Chronic Talelli et al. (2012) RCT (7) N _{Start} =41 N _{end} =41 TPS=Chronic	E: cTBS C: Sham Duration: 40min/d, 5d/wk for 2wk E: cTBS C: Sham cTBS Duration: 1hr/d, 5d/wk for 2wk	Action Research Arm Test (-) Nine Hole Peg Test (-) Jebsen Taylor hand test (-) Grasp strength (-) Pinch strength (-) Nine Hole Peg Test (-) Jebsen Taylor Hand test (-)
Ackerley et al. (2010) RCT (7) N _{start} = 24 N _{end} = 10 TPS= Chronic	E1: iTBS E2: cTBS C: Sham Duration: single session unspecified length	E1 Vs C Triplift (+exp1) E2 Vs C Griplift (+exp2) E1 Vs E2 Griplift Kinetics (-) Action Research Arm Test: (-)
	TBS compared to FES and Conven	tional Therapy
Khan et al. (2019) RCT (8) Nstart= 60 Nend= 60 TPS= Chronic	E: iTBS + Physical therapy E2: FES + Physical therapy C: Physical Therapy Duration: 4wks, 3x stimulation plus 5x physical therapy for 30min	E1 Vs C Fugl-Meyer Assessment: (+exp1) Modified Rankin Scale: (+exp1) Barthel Index: (+exp1) National Institute of Health Stroke Scale: (+exp1) E2 Vs C Fugl-Meyer Assessment: (+exp2) Modified Rankin Scale: (+exp2) Barthel Index: (+exp2) National Institute of Health Stroke Scale: (+exp2) E1 Vs E2 Fugl-Meyer Assessment: (-) Modified Rankin Scale: (-) Barthel Index: (-) National Institute of Health Stroke Scale: (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about TBS

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of iTBS to improve motor function when compared to sham stimulation.	9	Chen et al. 2019; Khan et al. 2019; Watanabe et al. 2018; Ackerley et al. 2016; Volz et al. 2016; Kim et al. 2015; Hsu et al. 2013; Sung et al. 2013; Talelli et al. 2012	
1a	cTBS may not have a difference in efficacy when compared to sham stimulation for improving motor function.	3	Di Larazzo et al. 2016; Di Larazzo et al. 2014; Talelli et al. 2012	

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

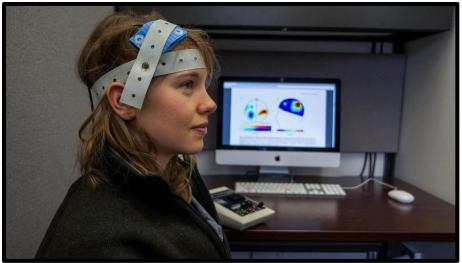
⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

1b	iTBS combined with low frequency rTMS may produce greater improvements in motor function than sham stimulation with or without iTBS.	1	Sung et al. 2013
1a	There is conflicting evidence about the effect of iTBS combined with low frequency rTMS to improve motor function when compared to sham stimulation with low frequency rTMS.	2	Meng et al. 2020; Sung et al. 2013
1a	iTBS may not have a difference in efficacy when compared to cTBS for improving motor function.	2	Ackerley et al. 2014; Ackerley et al. 2010
1a	cTBS with robotic therapy may not have a difference in efficacy when compared to robotic therapy alone for improving motor function.	1	Di Larazzo et al. 2016;
1b	iTBS may not have a difference in efficacy when compared to FES for improving motor function.	1	Khan et al. 2019

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	iTBS may produce greater improvements in muscle strength than sham stimulation.	6	Watanabe et al. 2018; Volz et al. 2016; Kim et al. 2015; Ackerley et al. 2014; Sung et al. 2013 Ackerley et al. 2010
1a	cTBS may not have a difference in efficacy when compared to sham stimulation for improving muscle strength.	3	Ackerley et al. 2014; Di Larazzo et al. 2014; Ackerley et al. 2010
1b	iTBS combined with low frequency rTMS may produce greater improvements in muscle strength than sham stimulation with or without iTBS.	1	Sung et al. 2013
1a	iTBS may not have a difference in efficacy when compared to cTBS for improving muscle strength.	2	Ackerley et al. 2014; Ackerley et al. 2010

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of iTBS to improve dexterity when compared to sham stimulation.	2	Chen et al. 2019; Talelli et al. 2012
1a	cTBS may not have a difference in efficacy when compared to sham stimulation for dexterity.	2	Di Lazzero et al. 2014; Talelli et al. 2012

STROKE SEVERITY				
LoE	RCTs	References		
1b	iTBS may produce greater improvements in outcomes of stroke severity than sham stimulation .	1	Khan et al. 2019	
1b	iTBS may not have a difference in efficacy when compared to FES for improving outcomes of stroke severity	1	Khan et al. 2019	


ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	iTBS may not have a difference in efficacy when compared to sham stimulation for improving performance of activities of daily living.	3	Chen et al. 2019; Khan et al. 2019; Sung et al. 2013
1b	There is conflicting evidence about the effect of iTBS combined with low frequency rTMS to improve performance of activities of daily living when compared to sham stimulation with low frequency rTMS.	2	Meng et al. 2020; Sung et al. 2013
1b	iTBS may not have a difference in efficacy when compared to FES for improving performance of activities of daily living.	1	Khan et al. 2019

SPASTICITY				
LoE	LoE Conclusion Statement RCTs References			
1a	iTBS may produce greater improvements in spasticity than sham stimulation.	3	Chen et al. 2019; atanabe et al. 2018; Kim et al. 2015	

Key points

Theta burst stimulation alone may be beneficial for spasticty and strength, but the literature is mixed for overall motor function and activities of daily living

Transcranial Direct Current Stimulation (tDCS)

Adopted from: https://tryniakaufman.com/2018/01/11/transcranial-direct-current-stimulation-the-drug-of-the-future/

Another form of non-invasive brain stimulation is transcranial direct-current stimulation (tDCS). This procedure involves the application of mild electrical currents (1-2 mA) conducted through two saline-soaked, surface electrodes applied to the scalp, overlaying the area of interest and the contralateral forehead above the orbit. Anodal stimulation is performed over the affected hemisphere and increases cortical excitability, while cathodal stimulation is performed over the unaffected hemisphere and decreases cortical excitability (Alonso-Alonso et al., 2007). Additionally, tDCS can be applied on both hemispheres concurrently, this is known as dual tDCS. In contrast to TMS, tDCS does not induce action potentials, but instead modulates the resting membrane potential of the neurons (Alonso-Alonso et al., 2007).

54 RCTs were found that evaluated tDCS interventions for upper extremity motor rehabilitation.

19 RCTs compared anodal tDCS to sham stimulation (Bornheim et al. 2020; Achacheluee et al. 2018; Andrade et al. 2017; Marquez et al. 2017; Pavlova et al. 2017; Allman et al. 2016; Ilic et al. 2016; Mortensen et al. 2016; Sik et al. 2015; Au Yeung et al. 2014; Fusco et al. 2013; Khedr et al. 2013; Stagg et al. 2012; Hesse et al. 2011; Tanaka et al. 2011; Kim et al. 2010; Kim et al. 2009; Boggio et al. 2007; Fregni et al. 2005).

16 RCTs compared cathodal tDCS to sham stimulation or conventional therapy (Alisar et al. 2020; Marquez et al. 2017; Rabadi et al. 2017; Lee et al. 2015; Au Yeung et al. 2014; Fusco et al. 2014; Fusco et al. 2013; Khedr et al. 2013; Wu et al. 2013; Stagg et al. 2012; Zimmerman et al. 2012; Hesse et al. 2011; Nair et al. 2011; Kim et al. 2010; Boggio et al. 2007; Fregni et al. 2005).

Eight RCTs compared dual tDCS to sham stimulation or conventional therapy (Beaulieu et al. 2019; Doost et al. 2019; Koh et al. 2017; Goodwill et al. 2016; Sik et al. 2015; Cha et al. 2014; Lefebvre et al. 2014; Fusco et al. 2013; Lefebvre et al. 2013; Lindenberg et al. 2010).

Five RCTs compared anodal tDCS versus cathodal tDCS (Khedr et al. 2013; Stagg et al. 2012; Hesse et al. 2011; Boggio et al. 2007; Fregni et al. 2005). One RCT compared cathodal tDCS to dual tDCS (Del Felice et al. 2017). One RCT combined anodal tDCS with strength training

(Hendy et al. 2014). Three RCTs compared anodal or cathodal tDCS with CIMT to sham stimulation with CIMT (Figlewski et al. 2016; Rocha et al. 2016; Cunningham et al. 2015). One RCT combined dual tDCS with cyclic NMES and CIMT (Takebayshi et al. 2017).

Four RCTs compared dual or anodal tDCS with robotics compared to sham stimulation with robotics or robotics alone (Dehem et al. 2018; Mazzoleni et al. 2017; Straudi et al. 2016; Triccas et al. 2015). One RCT compared anodal tDCS with robotics to cathodal tDCS with robotics (Ochi et al. 2013). Two RCTs compared anodal or dual tDCS with brain computer interfaces to sham stimulation with brain computer interfaces (Hong et al. 2017; Ang et al. 2015). Two RCTs compared dual tDCS with functional electrical stimulation to sham tDCS with functional electrical stimulation (Salazar et al. 2020; Shaheiwola et al. 2018). Two RCTs compared anodal tDCS with or without peripheral nerve stimulation to peripheral nerve stimulation (Powell et al. 2016; Sattler et al. 2015). Two RCTs compared dual tDCS with low frequency rTMS and mirror therapy to sham tDCS and mirror therapy (Jin et al. 2019; D'Agata et al. 2016).

Two RCTs compared anodal or cathodal tDCS with virtual reality to virtual reality interventions with or without sham stimulation (Lee et al. 2014; Viana et al. 2014). One RCT compared TBS to tDCS (Nicolo et al. 2018)

The methodological details and results of all 54 RCTs are presented in Table 30.

Table 30. RCTs Evaluating tDCS Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	Anodal tDCS versus	
Bornheim et al. (2020) RCT (8) N _{start} = 50 N _{end} = 46 TPS= Acute	E: Anodal tDCs C: Sham Duration: conventional rehab (2hr/5x/4wk) and tDCS (20min/5x/4wk)	Wolf Motor Function Test: (+exp) Handgrip strength: (+exp) Fugl-Meyer Assessment Upper Extremity: (-) Fugl-Meyers Assessment – Sensory: (+exp) Semmes Weinstein Monofilament Test: (+exp) Barthel Index: (-) Stroke Impact Scale: (-)
Achacheluee et al. (2018) RCT crossover (6) N _{start} = 25 N _{end} = 15 TPS= Chronic	E1: Anodal tDCS at M1 and DLPFC E2: Anodal tDCS at M1 only C: Sham Duration: 20 min single session of tDCS	E1 vs C Reaction time: (+exp ₁) Nine-Pin Pegboard test: (+exp ₁) Fugl-Meyer Assessment Upper Extremity: (-) E2 vs C Reaction time: (-) Nine-Pin Pegboard test: (-) Fugl-Meyer Assessment Upper Extremity: (-) E1 vs E2 Reaction time: (-) Nine-Pin Pegboard test: (+exp1) Fugl-Meyer Assessment Upper Extremity: (-)
Andrade et al. (2017) RCT (9) N _{Start} =60 N _{End} =60 TPS=Subacute	E1: Anodal Transcranial Direct Current Stimulation in Ipsilesional M1 and Constraint Induced Movement Therapy E2: Anodal Transcranial Direct Current Stimulation in Ipsilesional PMC and Constraint Induced Movement Therapy	E2 vs E1/C Fugl-Meyer Assessment (+exp ₂) Modified Ashworth Scale (+exp ₂) Box and Block Test (+exp ₂) Medical Research Council (+exp ₂) Barthel Index (+exp ₂) Wilcoxon signed-rank test: (+exp)

	C: Sham Stimulation and Constraint	
	Induced Movement Therapy	
	Duration: 30min/d, 5d/wk for 6wk	
Pavlova et al. (2017)	E: Anodal tDCS	Fugl-Meyer Assessment (-)
RCT (7)	C: Sham tDCS	Wolf Motor Function Test (-)
N _{Start} =11	Duration: 20min (2x/d), 5d/wk for 4wk	Box and Block Test (-)
N _{End} =11		
TPS=Chronic		
Allman et al. (2016)	E: Anodal tDCS	Action Research Arm Test (+exp)
RCT (7)	C: Sham tDCS	Wolf Motor Function Test (+exp) First Market Assessment ()
N _{Start} =26 N _{End} =24	Duration: 1hr/d, for 9d	Fugl-Meyer Assessment (-)
TPS=Chronic		
llic et al. (2016)	E: Anodal tDCS + occupational	Jebsen-Taylor Hand Function Test (+exp)
RCT (8)	therapy	Fugl-Meyer Assessment (-)
N _{Start} =26	C: Sham tDCS + occupational	Grip Strength (-)
Nend=25	therapy	Onp Strength (-)
TPS=Chronic	Duration: 45min/d, 5d/wk for 2wk	
Mortensen et al. (2016)	E: Anodal tDCS + occupational	Grip Strength (+exp)
RCT (7)	therapy	Stroke Impact Scale (-)
N _{Start} =16	C: Sham tDCS + occupational	Jebsen-Taylor Hand Function Test (-)
N _{End} =15	therapy	Constant and Constant Cont()
TPS=Chronic	Duration: 30min/d for 5d	
<u>Tanaka et al</u> . (2011)	E: Anodal tDCS	Grip strength (-)
RCT (6)	C: Sham	- · · · · · · · · · · · · · · · · · · ·
N _{start} =8	Duration: 30min/d, 4d/wk for 5wk	
N _{end} =8	,	
TPS=Subacute		
Kim et al. (2009)	E: Anodal tDCS	Box & Block Test (+exp)
RCT (7)	C: Sham	Finger acceleration (+exp)
N _{start} =10	Duration: 20min/d, 5d/wk for 6wk	
N _{end} =10		
TPS=Subacute		
	Cathodal tDCS versus sham stimul	lation or conventional therapy
Alisar et al. (2020)	E: Cathodal tDCS	Fugl-Meyers Assessment Upper Extremity: (-)
RCT (6)	C: Sham	Brunnstrom Stages of Stroke Recovery: (-)
N _{start} = 38	Duration: 30min 5X/wk for 4wks	Functional Independence Measure: (-)
N _{end} =32		
TPS= Chronic		
Rabadi et al. (2017)	E: Cathodal tDCS	Action Research Arm Test (-)
RCT (7)	C: Sham tDCS	
N _{Start} =16	Duration: 30min/d, 5d/wk for 2wk	
N _{End} =12		
TPS=Acute		
Lee et al. (2015)	E: Cathodal tDCS + physical therapy	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Physical therapy	
N _{Start} =24	Duration: 30min/d, 5d/wk for 4wk	
N _{End} =24		
TPS=Chronic		
Fusco et al. (2014)	E: Cathodal tDCS + active electrode	Canadian Neurologic Scale (-)
RCT (6)	C: Sham tDCS	Nine Hole Peg Test (-)
N _{Start} =14	Duration: 45min/d, 5d/wk for 2wk	Barthel Index (-) First Market Assessment (-) First Market Assessment (-) First Market Assessment (-) First Market Assessment (-)
N _{End} =11		Fugl-Meyer Assessment (-)
TPS=Subacute	5.0.4.1.1.000	H III II I
Wu et al. (2013)	E: Cathodal tDCS	Modified Ashworth Scale (+exp)
RCT (9)	C: Sham tDCS	
N _{Start} =90	Duration: 20min/d, 5d/wk for 4wk	
N _{End} =90	<u> </u>	

TPS=Chronic	I	
Zimerman et al. (2012) RCT (6) N _{start} =12 N _{end} =12 TPS=Chronic	E: Cathodal tDCS C: Sham tDCS Duration: Not Specified	Grip strength (-)
Nair et al. (2011) RCT (9) Nstart= 14 Nend= 14 TPS= Chronic	E: Cathodal tDCS C: Sham Duration: 30min, 5d +60min therapy	Fugl-Meyers Assessment Upper Extremity: (+exp) Three Joint Range of Motion: (+exp)
Hummel et al. (2005) RCT (6) N _{start} =6 N _{end} =6 TPS=Chronic	E: Cathodal tDCS C: Sham tDCS Duration: 20min/d, 3d/wk for 4wk	Jebsen-Taylor Hand Function test (+exp)
TT G=GINGING	Dual tDCS versus sham stimula	tion or conventional therapy
Beaulieu et al. (2019) RCT (7) Nstart= 14 Nend= 14 TPS= Chronic	E: Dual tDCS + strength training C: Sham + strength training Duration: 20min of tDCS stimulation for experimental with: strength training (60min/3x/4wk)	Fugl-Meyers Upper Extremity: (-) Wolf Motor Function Test Time: (-) Weight to Box: (-) Box and Block Test Affected Hand: (-) Unaffected Hand: (-) Grip Strength Affected Hand: (-) Unaffected Hand: (-) Unaffected Hand: (-) Motor Activity Log Amount of Use: (-) Quality of Movement: (-) Modified Ashworth Scale Shoulder Extensors: (-) Elbow Flexors: (-) Wrist: (-) Fingers: (-)
Doost et al. (2019) RCT (8) Nstart= 21 Nend= 21 TPS= Chronic Crossover	E: Dual tDCS (anodal ipsilesional) C: Sham Duration: 30min, 1x, 2-week washout	Bimanual Skill Acquisition (CIRCUIT): (-) Box and Block Test: (-) Bimanual Reaching Task: (-)
Koh et al. (2017) RCT (8) Nstart =25 NEnd =18 TPS=Chronic	E: Dual tDCS with Sensory Modulation C: Sham tDCS with Sensory Modulation Duration: 30min/d, 5d/wk for 8wk	 Fugl-Meyer Assessment (-) Modified Ashworth Scale (-) Action Research Arm Test (-) Barthel Index (-)
Goodwill et al. (2016) RCT (7) N _{Start} =16 N _{End} =15 TPS=Chronic	E: Dual tDCS + upper limb training C: Sham tDCS + upper limb training Duration: 30min/d, 5d/wk for 3wk	Tardieu Scale (-) Grip Strength (-)
Lefebvre et al. (2015) RCT Crossover (5) N _{Start} =19 N _{End} =19 TPS=Chronic	E: Dual tDCS C: Sham tDCS Duration: 30min/d, 5d/wk for 3wk	Purdue Pegboard Test (+exp)
Cha et al. (2014) RCT (6) N _{Start} =20 N _{End} =20	E: Dual tDCS C: Conventional training Duration: 30min/d, 5d/wk for 4wk	Fugl-Meyer Assessment (+exp) Box and Block Test (+exp)

TDC_Chronio		I
TPS=Chronic Lefebvre et al. (2014) RCT (8) N _{Start} =19 N _{End} =19	E: Dual tDCS C: Sham Duration: 20min/d, 5d/wk for 2wk	Purdue Pegboard Test (+exp) Precision grip (+exp)
TPS=Chronic Lefebvre et al. (2013) RCT (8) Nstart=18 Nend=18 TPS=Chronic	E: Dual tDCS C: Sham Duration: 30min/d, 4d/wk for 3wk	Purdue Pegboard Test (+exp) Maximal hand grip force (+exp)
Lindenberg et al. (2010) RCT (4) Nstart=20 Nend=20 TPS=Chronic	E: Dual tDCS C: Sham Duration: 30min/d, 5d/wk for 3wk	Fugl-Meyer Assessment (+exp) Wolf Motor Function Test (+exp)
	Anodal or cathodal tDCS v	versus sham stimulation
Marquez et al. (2017) RCT Crossover (8) N _{Start} =25 N _{End} =25 TPS=Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham tDCS Duration: 20min/d for 6d	E1/E2 vs C Jebsen-Taylor Hand Function test (-) Grip Strength (-)
Au-Yeung et al. (2014) RCT Crossover (8) N _{Start} =10 N _{End} =10 TPS=Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: Not Specified	E1/E2 vs C Purdue Pegboard Test (-) Pinch strength (-)
Khedr et al. (2013) RCT (9) Nstart=40 Nend=40 TPS= Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: 25min/d for 6d	E1/E2 vs C Orgogozo MCA scale (+exp, +exp ₂) National Institute of Health Stroke Scale (-) Barthel Index (+exp, +exp ₂) Medical Research Council Scale (-) E1 vs E2 Orgogozo MCA scale (-) National Institute of Health Stroke Scale (-) Barthel Index (-) Medical Research Council Scale (-)
Stagg et al. (2012) RCT (6) Nstart=13 Nend=13 TPS=Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: 80min/d, 3d/wk for 4wk	E1/E2 vs C Grip strength (+exp, +exp ₂) E1 vs E2 Grip strength (-)
Hesse et al. (2011) RCT (10) N _{start} =96 N _{end} =85 TPS=Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: 20min/d, 5d/wk for 6wk	E1/E2 vs C Fugl-Meyer Assessment (-) E1 vs E2 Fugl-Meyer Assessment (-)
Kim et al. (2010) RCT (7) Nstart=18 Nend=16 TPS=Subacute	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: Not Specified	E2 vs C Fugl-Meyer Assessment (+exp ₂) Barthel Index (-) E1 vs C Fugl-Meyer Assessment (-) Barthel Index (-)
Boggio et al. (2007) RCT (6) N _{start} =4 N _{end} =4 TPS=Chronic	E1: Anodal tDCS E2: Cathodal tDCS C: Sham Duration: 20min, 1x/wk for 4wk	E1/E2 vs C Jebsen-Taylor Hand Function test (+exp, +exp₂) E1 vs E2 Jebsen-Taylor Hand Function test (-)

Fregni et al. (2005)	E1: Anodal tDCS	<u>E1/E2 vs C</u>			
RCT (7)	E2: Cathodal tDCS	 Jebsen Taylor Hand Function test: (+exp, +exp₂) 			
N _{start} =6	C: Sham	E1 vs E2			
Nend=6	Duration: Not Specified	Jebsen Taylor Hand Function test: (-)			
TPS= Chronic	Janament rist speemed	Cosservation realism to the cost ()			
	Anodal, cathodal or dual tDCS versus sham stimulation				
Sik et al. (2015)	E1: Anodal tDCS + PT + OT	E1/E2 vs C			
RCT (6)	E2: Dual tDCS + PT + OT	Wolf Motor Function Test (+exp, +exp ₂)			
N _{start} =36	C: Sham tDCS + PT + OT	Jebsen Taylor Hand Function Test (+exp, +exp ₂)			
Nend=31	Duration: Not Specified				
TPS=Subacute	Duration. Not Specified				
1P3=Subacule		(+exp ₂)			
		E1 vs E2			
		Wolf Motor Function Test (-), Ishaan Taylor Hand Function Test (-)			
		Jebsen Taylor Hand Function Test (-)			
		Kocaeli Functional Evaluation Test (-)			
Fusco et al. (2013)	E1: Dual tDCS	E1/E2/E3 vs C			
	E2: Anodal tDCS				
RCT (7)		Nine hole peg test (+exp, +exp ₂ , +exp ₃)			
N _{start} =9	E3: Cathodal tDCS	Grasp force (-)			
N _{end} =9	C: Sham				
TPS=Subacute	Duration: 15min/d for 2d				
5.15.	Cathodal versus dual t				
Del Felice et al. (2017)	E: Cathodal Trans Direct Current	Modified Ashworth Scale (+exp)			
RCT crossover (8)	Stimulation	Bhakta Finger Flexion Scale (-)			
N _{Start} =10	C: Dual tDCS	European Stroke Scale (-)			
N _{End} =10	Duration: 20min/d, 5d/wk for 3wk	Action Research Arm Test (-)			
TPS=Chronic		Medical Research Council Scale (-)			
		Barthel Index (-)			
Anod	al tDCS with strength training compar	ed to sham tDCS with strength training			
Hendy et al. (2014)	E1: Strength training + anodal tDCS	Maximum voluntary dynamic strength for			
RCT (7)	E2: Strength training + sham	wrist extensors (-)			
N _{Start} =10	C: Anodal tDCS				
N _{End} =10	Duration: 20min/d, 2d/wk for 5wk				
TPS=Chronic					
	Anodal or cathodal	tDCS with CIMT			
Figlewski et al. (2016)	E: CIMT + Anodal tDCS	Wolf Motor Function Test (+exp)			
RCT (7)	C: CIMT + Sham tDCS	Grip Strength (-)			
N _{Start} =44	Duration: 6hr/d for 9d	Arm Strength (-)			
Nend=44	Baration: only a for ou	, am caongar ()			
TPS=Chronic					
Rocha et al. (2016)	E1: Anodal tDCS with CIMT	E1 vs C			
RCT (8)	E2: Cathodal tDCS with CIMT	Fugl-Meyer Assessment (+exp)			
N _{Start} =21	C: Sham tDCS with CIMT	Motor Acivity Log (-)			
N _{End} =21	Duration: 1hr/d, 6d/wk for 2wk				
TPS=Chronic	Duration. Thi/d, 6d/wk for 2wk	• Grip Strength (-) E2 vs C			
1PS=Chronic					
		Fugl-Meyer Assessment (-) Material Assistington (-) Material Assistington (-)			
		Motor Acivity Log (-)			
		Grip Strength (-)			
Cunningham et al. (2015)	E: anodal tDCS + CIMT	9 Hole Peg Test (-)			
RCT (6)	C: Sham tDCS + CIMT	Motor Activity Log (-)			
N _{Start} =12	Duration: 30min/d, 3d/wk for 10wk	Fugl-Meyer Assessment (-)			
N _{End} =12					
TPS=Chronic					
	Dual tDCS with cyclic	NMES and CIMT			
Takebayshi et al. (2017)	E: Dual tDCS combined with cyclic	Fugl-Meyer Assessment (+exp)			
RCT (7)	NMES with CIMT	Motor Activity Log (+exp)			
N _{Start} =20	C: CIMT	, , , , , , , , , , , , , , , , , , , ,			
N _{End} =19	Duration: 2hr (2x/d), 5d/wk for 3wk				
TPS=Chronic	(,				
1 PS=Chronic					

Dual or ar	nodal tDCS with robotics compared to	sham tDCS with robotics or robotics alone
Dehem et al. (2018)	E: Dual tDCS with Upper Limb	Box and Block Test (+exp)
RCT-crossover (6)	Robotic Assisted Therapy	Purdue Pegboard Test (-)
N _{Start} =21	C: Sham tDCS with Upper Limb	
N _{End} =20	Robotic Assisted Therapy	
TPS=Chronic	Duration: 45min/d, 5d/wk for 6wk	
Straudi et al. (2016)	E: Robot-assisted therapy + dual	Fugl-Meyer Assessment (-)
RCT (6)	tDCS	Box and Block Test (-)
N _{Start} =23	C: Robot-assisted therapy + sham	Motor Acivity Log (-)
N _{End} =23 TPS=Subacute and chronic	tDCS Duration: 45min/d, 5d/wk for 2wk	
		Fuel Mayor Assessment ()
Mazzoleni et al. (2017) RCT (7)	E: Anodal tDCS with Wrist Robot-	Fugl-Meyer Assessment (-) Modified Ashworth Scale (-)
N _{Start} =24	Assisted Training C: Wrist Robot-Assisted Training	Modified Astrivorum Scale (-) Motricity Index (-)
N _{End} =24	Duration: Not Specified	Box and Block Test (-)
TPS=Acute	Buration. Not opecined	Box and Block Test (-)
Triccas et al. (2015)	E: Anodal tDCS + robotic	Fugl-Meyer Assessment (-)
RCT (8)	ArmeoSpring	Action Research Arm Test (-)
N _{start} =23	C: Sham tDCS + robotic	Motor Activity Log (-)
N _{end} =22	ArmeoSpring	Stroke Impact Scale (-)
TPS=Subacute	Duration: 45min/d, 3d/wk for 4wk	()
	Anodal versus cathodal tDCS	stimulation with robotics
Ochi et al. (2013)	E: Anodal tDCS on affected	Modified Ashworth Scale (+exp)
RCT (7)	hemisphere + robot assisted arm	Fugl-Meyer Assessment (-)
N _{start} =18	training	Motor Activity Log (-)
N _{end} =16	C: Cathodal tDCS on unaffected	
TPS=Chronic	hemisphere + robot assisted arm	
	training	
	Duration: 45min/d, for 5d	
	odal or dual tDCS with brain compute	
Hong et al. (2017)		Fugl-Meyer Assessment (-)
RCT (5)	Motor Imagery with Dual tDCS	
N _{Start} =19	C: Brain computer interface -Assisted	
N _{End} =19 TPS=Chronic	Motor Imagery with Sham tDCS Duration: 20min/d, 5d/wk for 2wk	
		- Fuel Mover Accomment ()
Ang et al. (2015) RCT (6)	E: Anodal tDCS + motor imagery brain computer interface with robotic	Fugl-Meyer Assessment (-)
N _{Start} =19	feedback	
Nend =19	C: Sham tDCS + motor imagery brain	
TPS=Chronic	computer interface with robotic	
	feedback	
	Duration: 80min/d, 5d/wk for 4wk	
	Dual tDCS v	with FES
Salazar et al. (2020)	E: Dual tDCS + FES	Kinematics
RCT (8)	C: Sham tDCS + FES	Task Movement Time (Reaching) (+exp)
N _{start} = 30	Duration: 30min, 5x/wk, 2wks	Mean Reaching Velocity (+exp)
N _{end} = 30		Mean Return Velocity (-)
TPS= Chronic		Peak Velocity (-)
		Smoothness (-)
		Elbow Range of Motion (-)
		Grip Strength (+exp)
		Fugl-Meyers Upper Limb (-)
Shaheiwola et al. (2018)	E: Dual tDCS with FES	Fugl-Meyer Assessment (+exp)
RCT (6)	C: Sham tDCS with FES	Wolf Motor Function Test Score (+exp)
N _{Start} =30	Duration: 45min/d, 5d/wk for 4wk	Modified Ashworth Scale (-)
N _{End} =30		
TPS=Chronic		
	Anodal tDCS with periph	

Menezes et al. (2018) RCT (8) Nstart= 22 Nend= 20 TPS= Chronic	E: Active repetitive peripheral nerve sensory stimulation (RPPS) + sham tDCS E2: Sham RRPS + active tDCS E3: Active RRPS + active tDCS C: Sham RRPS + sham tDCS Duration: 1 (2hrs RPPS, 20min tDCS) /session, 10-15d washout E1: Anodal tDCS followed by peripheral nerve stimulation E2: Peripheral nerve stimulation	E1 Vs C Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) E2 Vs C Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) E3 Vs C Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) E1 Vs E2 Vs E3 Wrist Range of Motion (Flexion, Extension): (-) Grip, Pinch Strength: (-) Fugl-Meyer Assessment (-) Stroke Impact Scale (-)
N _{End} =10	followed by tDCS	
TPS=Chronic Sattler et al. (2015) RCT (7) Nstart=20 NEnd=20 TPS=Acute	Duration: Not Specified E: Repetitive peripheral nerve stimulation + anodal tDCS C: Repetitive peripheral nerve stimulation Duration: 20min/d, 5d/wk for 4wk	Jebsen Hand Function Test (+exp) Grip Strength (-) 9 Hole Peg Test (-) Hand Tapping Test (-) Fugl-Meyer Assessment (-)
	Dual tDCS with low frequency r	TMS and/or mirror therapy
Jin et al. (2019) RCT (8) Nstart= 30 Nend= 28 TPS= Chonic D'Agata et al. (2016) RCT (6) Nstart = 34 NEnd = 34 TPS=Chronic	E1: Dual tDCSs + mirror therapy (before) E2: Dual tDCSs + mirror therapy (during) C: Sham + mirror therapy Duration: 30 min (stimulation and mirror each) 5x/wk, 2wks E: Dual tDCS + low frequency (1Hz) rTMS + Mirror Therapy C: Sham tDCS + Mirror Therapy Duration: 1hr/wk, 5d/wk for 2wk	E1 Vs C Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (-) Box and Block Test: (-) E2 Vs C Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (+exp2) Box and Block Test: (-) E1 Vs E2 Fugle-Meyers Upper Extremity: (-) Action Research Arm Test: (+exp2) Box and Block Test: (-) Action Research Arm Test: (+exp2) Action Research Arm Test (+exp)
TF3=CITIONIC		
1 (004.0)	Anodal or cathodal tDCS	T .
Lee et al. (2014) RCT (7) Nstart=64 NEnd=59 TPS=Chronic	E1: cathodal tDCS E2: Virtual reality E3: Cathodal tDCS + virtual reality Duration: 90min/d, 3d/wk for 4wk	E1 vs E2 Manual Function Test (+exp) Fugl-Meyer Assessment (+exp) Modified Barthel Index (-) Manual Muscle Test (-) Modified Ashworth Scale (-) Box and Block Test (-) E3 vs E2/E1 Manual Function Test (+exp ₃) Fugl-Meyer Assessment (+exp ₃) Modified Barthel Index (-) Manual Muscle Test (-) Modified Ashworth Scale (-) Box and Block Test (-)
Viana et al. (2014) RCT (9)	E: Virtual reality + anodal tDCS C: Virtual reality + sham	Fugl-Meyer Assessment (-) Wolf Motor Function Test (-)

N _{Start} =20 N _{End} =20 TPS=Chronic	Duration: 1hr/d, 3d/wk for 5wk	Modified Ashworth Scale (-) Grip strength (-)
	TBS versu	us tDCS
Nicolo et al. (2018) RCT (9) Nstart= 41 Nend= 41 TPS= Subacute	E1: Neuronavigated Continuous Theta Burst Stimulation (TBS) E2: Cathodal -tDCS C: Sham Duration: 30min, 3x/wk, 3wks	E1 Vs C Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-) E2 Vs C Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Nine Hole Peg Test: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-) E1 Vs E2 Fugl-Meyers Assessment Upper Extremity: (-) Box and Block Test: (-) Nine Hole Peg Test: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-) Motor Activity Log-14 Quantitative Score: (-) Jamar Dynamometer: (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about tDCS

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	There is conflicting evidence about the effect of anodal tDCS to improve motor function when compared to sham stimulation .	13	Bornheim et al. 2020; Achacheluee et al. 2018; Andrade et al. 2017; Marquez et al. 2017; Pavlova et al. 2017; Allman et al. 2016; llic et al. 2016; Mortensen et al. 2016; Sik et al. 2015; Hesse et al. 2011; Kim et al. 2010; Boggio et al. 2007; Fregni et al. 2005	
1a	There is conflicting evidence about the effect of cathodal tDCS to improve motor function when compared to sham stimulation or conventional therapy.	12	Alisar et al. 2020; Nicolo et al. 2018; Maquez et al. 2017; Rabadi et al. 2017; Lee et al. 2015; Fusco et al. 2014; Hesse et al. 2011; Nair et al. 2011; Kim et al. 2010; Boggio et al. 2007; Fregni et al. 2005	
1a	There is conflicting evidence about the effect of dual tDCS to improve motor function when compared to sham stimulation or conventional therapy .	6	Beaulieu et al. 2019; Doot et al. 2019; Koh et al. 2017; Sik et al. 2015; Cha et al. 2014; Lindenberg et al. 2010	
1a	Anodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving motor function.	3	Hesse et al. 2011; Boggio et al. 2007; Fregni et al. 2005	

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

	Cathodal tDCS may not have a difference in efficacy		Del Felice et al. 2017
1b	when compared to dual tDCS for improving motor	1	
	function.		
	There is conflicting evidence about the effect of anodal	_	Figlewski et al. 2016; Rocha et al. 2016;
1a	tDCS with CIMT to improve motor function when	3	Cunningham et al.
	compared to sham tDCS with CIMT.		2015 Rocha et al. 2016
1b	Cathodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT	1	rtooria et al. 2010
10	for improving motor function.	!	
	Dual tDCS with cyclic NMES and CIMT may produce		Takebayshi et al.
1b	greater improvements in motor function than CIMT.	1	2017
			Straudi et al. 2016
	Dual tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS		Straudi et al. 2010
1b	with upper limb robotics for improving motor	1	
	function.		
	Anodal tDCS with upper limb robotics may not have		Mazzoleni et al.
1a	a difference in efficacy when compared to sham tDCS	2	2017; Triccas et al. 2015
Id	with upper limb robotics or upper limb robotics	_	
	alone for improving motor function.		Ochi et al. 2013
	Anodal tDCS with upper limb robotics may not have a difference in efficacy when compared to cathodal		Ochi et al. 2013
1b	tDCS with upper limb robotics for improving motor	1	
	function.		
	Anodal or dual tDCS with brain computer interface-		Hong et al. 2017;
	assisted motor imagery interventions may not have		Ang et al. 2015
1b	a difference in efficacy when compared to sham tDCS	2	
	with brain computer interface-assisted motor		
	imagery interventions for improving motor function.		Salazar et al. 2020;
1a	There is conflicting evidence about the effect of dual tDCS with FES to improve motor function when	2	Shaheiwola et al.
Ia	compared to sham tDCS with FES.		2018
	Anodal tDCS with peripheral nerve stimulation may		Powell et al. 2016;
1a	not have a difference in efficacy when compared to	2	Sattler et al. 2015
Id	peripheral nerve stimulation for improving motor		
	function.		l'
	There is conflicting evidence about the effect of dual		Jin et al. 2019; D'Agata et al. 2016
1a	tDCS with rTMS and/or mirror therapy to improve motor function when compared to mirror therapy	2	
	alone.		
	There is conflicting evidence about the effect of anodal		Lee et al. 2014;
1a	or cathodal tDCS with virtual reality training to	2	Viana et al. 2014
Id	improve motor function when compared to virtual		
	reality training with or without sham tDCS.		1
1b	Cathodal tDCS may produce greater improvements in	1	Lee et al. 2014
10	motor function than virtual reality training .	'	

	STROKE SEVERITY		
LoE	Conclusion Statement	RCTs	References

1b	There is conflicting evidence about the effect of anodal tDCS to produce greater improvements on measures of stroke severity when compared to sham stimulation .	1	Khedr et al. 2013
1a	Cathodal tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improvements on measures of stroke severity.	2	Fusco et al. 2014; Khedr et al. 2013
1b	Anodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improvements on measures of stroke severity.	1	Khedr et al. 2013
1b	Cathodal tDCS may not have a difference in efficacy when compared to dual tDCS for improvements on measures of stroke severity.	1	Del Felice et al. 2017

	PROPRIOCEPTION				
LoE	Conclusion Statement	RCTs	References		
1b	Anodal tDCS may produce greater improvements in proprioception than sham stimulation.	1	Bornheim et al. 2020		

DEXTERITY			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of anodal tDCS to improve dexterity when compared to sham stimulation .	6	Achacheluee et al. 2018; Andrade et al. 2017; Pavlova et al. 2017; Kim et al. 2009; Au Yeung et al. 2014; Fusco et al. 2013
1a	Cathodal tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving dexterity.	5	Alisar et al. 2020; Nicolo et al. 2018; Au Yeung et al. 2014; Fusco et al. 2014; Fusco et al. 2013
1a	Dual tDCS may produce greater improvements in dexterity than sham stimulation or conventional therapy .	7	Beaulieu et al. 2019; Doost et al. 2019; Lefebvre et al. 2015; Cha et al. 2014; Lefebvre et al. 2014; Lefebvre et al. 2013; Fusco et al. 2013
1b	Anodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT for improving dexterity.	1	Cunningham et al. 2015
1a	Dual tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics for improving dexterity.	2	Dehem et al. 2018; Straudi et al. 2016

1b	Anodal tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics or upper limb robotics alone for improving dexterity.	1	Mazzoleni et al. 2017
1b	Anodal tDCS with peripheral nerve stimulation may not have a difference in efficacy when compared to peripheral nerve stimulation for improving dexterity.	1	Sattler et al. 2015
1b	Dual tDCS and mirror therapy may not have a difference in efficacy when compared to mirror therapy alone for improving dexterity.	1	Jin et al. 2019
1b	Anodal or cathodal tDCS with virtual reality training may not have a difference in efficacy when compared to virtual reality training with or without sham tDCS for improving dexterity.	1	Lee et al. 2014
1b	Cathodal tDCS may not have a difference in efficacy when compared to virtual reality training for improving dexterity.	1	Lee et al. 2014

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1b	Anodal tDCS may produce greater improvements in spasticity than sham stimulation.	1	Andrade et al. 2017
1b	Cathodal tDCS may produce greater improvements in spasticity than sham stimulation or conventional therapy.	1	Wu et al. 2013
1a	Dual tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving spasticity.	3	Beaulieu et al. 2019; Koh et al. 2017; Goodwill et al. 2016
1b	There is conflicting evidence about the effect of cathodal tDCS to improve spasticity when compared to dual tDCS.	1	Del Felice et al. 2017
1b	Anodal tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics or upper limb robotics alone for spasticity.	1	Mazzoleni et al. 2017
1b	Anodal tDCS with upper limb robotics may produce greater improvements in spasticity than cathodal tDCS with upper limb robotics.	1	Ochi et al. 2013
1b	Dual tDCS with FES may not have a difference in efficacy when compared to sham tDCS with FES for spasticity.	1	Shaheiwola et al. 2018
1a	Anodal or cathodal tDCS with virtual reality training may not have a difference in efficacy when compared to virtual reality training with or without sham tDCS for improving spasticity.	2	Lee et al. 2014; Viana et al. 2014

	Cathodal tDCS may not have a difference in efficacy		Lee et al. 2014
1b	when compared to virtual reality training for	1	
	improving spasticity.		

	ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References	
1a	Anodal tDCS may not have a difference in efficacy when compared to sham stimulation for improving performance of activities of daily living.	5	Bornheim et al. 2020; Andrade et al. 2017; Mortensen et al. 2016; Khedr et al. 2013; Kim et al. 2010	
1a	Cathodal tDCS may not have a difference in efficacy when compared to sham stimulation for improving performance of activities of daily living.	5	Alisar et al. 2020; Nicolo et al. 2018; Fusco et al. 2014; Khedr et al. 2013; Kim et al. 2010	
1a	Dual tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving performance of activities of daily living.	2	Beaulieu et al. 2019; Koh et al. 2017	
1b	Anodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving performance of activities of daily living.	1	Khedr et al. 2013	
1b	Cathodal tDCS may not have a difference in efficacy when compared to dual tDCS for improving performance of activities of daily living.	1	Del Felice et al. 2017	
1a	Anodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT for improving performance of activities of daily living.	2	Rocha et al. 2016; Cunningham et al. 2015	
1b	Cathodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT for improving performance of activities of daily living.	1	Rocha et al. 2016	
1b	Dual tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics for improving performance of activities of daily living.	1	Straudi et al. 2016	
1b	Anodal tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics or upper limb robotics alone for improving performance of activities of daily living.	1	Triccas et al. 2015	
1b	Anodal tDCS with upper limb robotics may produce greater improvements in performance of activities of daily living than cathodal tDCS with upper limb robotics.	1	Ochi et al. 2013	
1b	Anodal tDCS with peripheral nerve stimulation may not have a difference in efficacy when compared to peripheral nerve stimulation for improving performance of activities of daily living.	1	Powell et al. 2016	

1b	Anodal or cathodal tDCS with virtual reality training may not have a difference in efficacy when compared to virtual reality training with or without sham tDCS for improving performance of activities of daily living.	1	Lee et al. 2014
1b	Cathodal tDCS may not have a difference in efficacy when compared to virtual reality training for improving performance of activities of daily living.	1	Lee et al. 2014

	MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References		
1a	Anodal tDCS may not have a difference in efficacy when compared to sham stimulation for improving muscle strength.	10	Bornheim et al. 2020; Andrade et al. 2017; Marquez et al. 2017; Ilic et al. 2016; Mortensen et al. 2016; Au Yeung et al. 2014; Fusco et al. 2013; Khedr et al. 2013; Stagg et al. 2012; Tanaka et al. 2011		
1a	Cathodal tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving muscle strength.	7	Nicolo et al. 2018; Marquez et al. 2017; Au Yeung et al. 2014; Khedr et al. 2013; Fusco et al. 2013; Stagg et al. 2012; Zimmerman et al. 2012		
1a	Dual tDCS may not have a difference in efficacy when compared to sham stimulation or conventional therapy for improving muscle strength.	5	Beaulieu et al. 2019; Goodwill et al. 2016; Lefebvre et al. 2014; Fusco et al. 2013; Lefebvre et al. 2013		
1a	Anodal tDCS may not have a difference in efficacy when compared to cathodal tDCS for improving muscle strength.	2	Khedr et al. 2013; Stagg et al. 2012		
1b	Cathodal tDCS may not have a difference in efficacy when compared to dual tDCS for improving muscle strength.	1	Del Felice et al. 2017		
1b	Anodal tDCS with strength training may not have a difference in efficacy when compared to sham tDCS with strength training for improving muscle strength.	1	Hendy et al. 2014		
1a	Anodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT for improving muscle strength.	2	Figlewski et al. 2016; Rocha et al. 2016		
1b	Cathodal tDCS with CIMT may not have a difference in efficacy when compared to sham tDCS with CIMT for improving muscle strength.	1	Rocha et al. 2016		
1b	Dual tDCS with FES may produce greater muscle strength than sham tDCS with FES.	1	Salazar et al. 2020		
1b	Anodal tDCS with upper limb robotics may not have a difference in efficacy when compared to sham tDCS with upper limb robotics or upper limb robotics alone for improving muscle strength.	1	Mazzoleni et al. 2017		
1a	Anodal tDCS with peripheral nerve stimulation may not have a difference in efficacy when compared to peripheral nerve stimulation for improving muscle strength.	2	Menezes et al. 2018; Sattler et al. 2015		

1a	Anodal or cathodal tDCS with virtual reality training may not have a difference in efficacy when compared to virtual reality training with or without sham tDCS for improving muscle strength.	2	Lee et al. 2014; Viana et al. 2014
1b	Cathodal tDCS may not have a difference in efficacy when compared to virtual reality training for improving muscle strength.	1	Lee et al. 2014

Key points

The literature is mixed regarding anodal, cathodal, or dual transcranial direct current stimulation, alone or in combination with other therapy approaches, for upper limb rehabilitation following stroke.

Pharmaceuticals

Botulinum Toxin

Adopted from: http://www.theinvestor.co.kr/view.php?ud=20180104000712

Botulinum toxin exerts a therapeutic effect by reducing overactivity in spastic muscles through blocking the release of acetylcholine at the neuromuscular junction. The benefits of botulinum toxin injections are generally dose-dependent and last approximately 2 to 4 months (Brashear et al. 2002; Francisco et al. 2002; Simpson et al. 1996; Smith et al. 2000). One of the advantages of botulinum toxin is that it is safe to use on small, localized areas or muscles, such as those in the upper extremity. Unlike chemodenervation and neurolytic procedures like phenol or alcohol, botulinum toxin is not associated with skin sensory loss or dysesthesia (Suputtitada & Suwanwela, 2005). Dynamic EMG studies can be helpful in determining which muscles should be injected (Bell & Williams, 2003).

48 RCTs using botulinum toxin were included: 28 RCTs looked at botulinum toxin A compared to placebo (Wallace et al. 2020; Rekand et al. 2019; Prazeres et al. 2018; Rosales et al. 2018; Elovic et al. 2016; Wissel et al. 2016; Gracies et al. 2015; Hesse et al. 2012; Lam et al. 2012; Marciniak et al. 2012; Rosales et al. 2012; Wolf et al. 2012; Shaw et al. 2011; Kaji et al. 2010; Shaw et al. 2010; Kanovsky et al. 2009; McCrory et al. 2009; Meythaler et al. 2009; Simpson et al. 2009; Jahangir et al. 2007; Suputtitada and Suwanwela, 2005; Childers et al. 2004; Brashear et al. 2002; Bakheit et al. 2001; Bhakta et al. 2000; Smith et al. 2000; Simpson et al. 1996). Two RCTs looked at botulinum toxin B compared to placebo (Gracies et al. 2014; Brashear et al. 2004). One RCT looked at botulinum toxin A with upper limb rehabilitation compared to botulinum toxin A alone (Devier et al. 2017). Four RCTs looked at OnabotulinumtoxinA compared to letibotulinumtoxinA, NABOTA, Neurnox or tizanidine (Do et al. 2017; Nam et al. 2015; Seo et al. 2015; Simpson et al. 2009). Two RCTs looked at high versus low dosage botulinum toxin A (Masakdo et al. 2020; Francisco et al. 2002). A single RCT looked at botulinum toxin A combined with adhesive taping versus botulinum toxin A combined with manual muscle stretching, passive articular mobilization, and palmar splinting (Santamato et al. 2015). Three RCTs looked at ultrasound guided botulinum toxin A injections versus other approaches (Zeuner et al. 2017; Picelli et al. 2014; Santamato et al. 2014). Two RCTs looked at botulinum toxin A combined with NMES (Marvulli et al. 2016; Hesse et al. 1998). Two RCTs

looked at botulinum toxin A combined with mCIMT compared to botulinum toxin A (Nasb et al. 2019; Sun et al. 2010). A single RCT looked at botulinum toxin A combined with task-specific training compared to task-specific training alone (Umar et al. 2018). A single RCT compared botox in combination with lycra orthosis (Giray et al. 2019), and a single RCT compared botox in combination with robotic therapy (Masakdo et al. 2020)

The methodological details and results of all 48 RCTs evaluating rTMS for the upper extremity motor rehabilitation are presented in Table 31.

Table 31. RCTs Evaluating Botulinum Toxin Injections for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	inum toxin A versus placebo, no inje	ction or conventional rehabilitation
Wallace et al. (2020) RCT (8) Nstart=28 Nend=27 TPS=Chronic	E: Botox C: Placebo Duration: rehab 45min-1.5hrs, 10x/4wks	 Functional grasp and release task- time: (-) Wrist stiffness: (-) Finger stiffness: (-) Modified Ashworth Scale: Wrist flexion: (-) Finger flexion: (-) Wrist extension strength: (-) Finger extension strength: (-) Grip strength: (-) Range of Motion-wrist extension: (-) Range of Motion- finger flexion: (-) Nine Hole Peg Test: (-) Action Research Arm Test: (-)
Rekand et al. (2019) RCT (8) Nstart=88 Nend=56 TPS=Chronic	E: Botox neuromuscular junction targeting C: Standard botox Duration: 4 wks	Modified Ashworth Scale: (-) Goal attainment scale: (-)
Prazares et al. (2018) RCT (10) N _{start} =40 N _{end} =36 TPS=Chronic	E: Botox C: Placebo Duration: 30min, 2x/wk rehab	 Fugl-Meyer Upper Extremity-Global: (-) Wrist stability: (-) Coordination and speed: (+con) Hand function: (-) Modified Ashworth Scale: Elbow: (+exp) Wrist: (+exp)
Rosales et al. (2018) RCT (7) N _{Start} =42 N _{End} =40 TPS=Subacute	E: Abobotulinumtoxin A 500U C: Placebo	 Modified Ashworth Scale (+exp) Upper extremity active motor function (-)
Elovic et al. (2016) RCT (6) N _{Start} =317 N _{End} =299 TPS=Chronic	E: 400U incobotulinumtoxinA C: Placebo	Ashworth Scale (+exp) Disability Assessment Scale (+exp)
Wissel et al. (2016) RCT (7) N _{start} =273 N _{end} =224	E: IncobotulinumtoxinA (340 - 365MU) C: Placebo Duration: 24 - 32wks	Patient rating on Goal Attainment Scale: (-) Interference with work (SF-12): (+exp)

TPS=Chronic		
Gracies et al. (2015) RCT (8) NStart=243 NEnd=229 TPS=Chronic	E1: Single 500U AbobotulinumtoxinA E2: Single 1000U AbobotulinumtoxinA C: Placebo	 E1/E2 vs. C Modified Ashworth Scale (+exp, +exp₂) Disability Assessment Scale (-)
Ward et al. (2014) RCT (8) N _{start} =274 N _{end} =253 TPS=Chronic	E: Botox (max 800U) C: Placebo Duration: 24wks or 10wks after second injection (32)	Principal active function goal: (-) Secondary active and passive goals: (-)
Hesse et al. (2012) RCT (7) N _{start} =18 N _{end} =18 TPS=Acute	E: 150U Xeomin C: No injection	Modified Ashworth Scale score (+exp) Resistance to Passive Movement Scale (+exp) Fugl-Meyer Assessment (-)
Lam et al. (2012) RCT (8) N _{start} = 55 N _{end} = 51 TPS= Chronic	E: Botox (type A) C: Placebo Duration: max 1000U (+ therapy 2x/wk, splitting 3hrs, 5x/wk) 24wks total	Goal Attainment Scaling: (+exp) Tardieu Shoulder: (+exp) Elbow: (-) Modified Ashworth Scale Shoulder: (-) Elbow: (+exp) Finger: (+exp) Passive Range of Motion Shoulder: (-) Elbow: (-) Finger: (-)
Marciniak et al. (2012) RCT (5) NStart=21 NEnd=19 TPS=Chronic	E: 100-150U of botulinum toxin type A (BTX-A) into the pectoralis major and teres major muscles in the shoulder extensors. C: Placebo	 Modified Ashworth Scale (-) Passive range of motion (+exp) Fugl-Meyer Assessment (+exp) Functional Independence Measure (-) Disability Assessment Scale (+exp)
Rosales et al. (2012) RCT (9) Nstart= 163 Nend= 151 TPS= Subacute	E: Botox 500U C: Placebo Duration: 24 wks	Modified Ashworth Scale: (+exp) Barthel Index (-) Modified Rankin score (-) functional motor assessment (-) Range of Motion, passive Elbow: (+exp) Wrist: (+exp) Finger: (-) Range of Motion, active Elbow (-) Wrist (-)
Wolf et al. (2012) RCT (9) N _{start} =25 N _{end} =22 TPS=Chronic	E: 300U Botox (BTX-A) C: Placebo	Wolf Motor Function test (-)
Shaw et al. (2011) RCT (8) Nstart=333 Nend=329	E: 100-200 U Dysport + 4 weeks therapy C: Therapy only	Action Research Arm Test (-) Modified Ashworth Scale (+exp) 9-Hole Peg Test (-) Barthel Index (-)
Kaji et al. (2010) RCT (9) Nstart=109 Nend=109	E1: 120 U Botox (BoNTA) C1: Placebo E2: 200 U Botox (BoNTA) C2: Placebo	E2 vs C2 • Modified Ashworth Scale (+exp ₂) • Disability Assessment Scale (+exp ₂) E1 vs C1

TPS=Chronic		Modified Ashworth Scale (-) Disability Assessment Scale (+exp ₁)
Shaw et al. (2010) RCT (6) N _{Start} =333 N _{End} =199 TPS=Subacute	E: Botulinum toxin type A (BTX-A, Dysport) injections + upper limb therapy C: Upper limb therapy	Action Research Arm Test (-) Modified Ashworth Scale (+exp) Motricity Index (+exp) Grip Strength (-) 9-Hole Peg Test (-) Barthel Index (-)
Kanovský et al. (2009) RCT (8) Nstart= 148 Nend= 145 TPS= Chronic	E: Botulinum neurotoxin NT 201 C: Placebo Duration: 12wks (max 400U btx)	Modified Ashworth Scale: Wrist: (+exp) Finger: (-) Thumb: (+exp) Elbow: (-) Forearm: (-) Disability Assessment Scale: (+exp)
McCory et al. (2009) RCT (10) N _{start} = 96 N _{end} = 90 TPS= Chronic Multi-site	E: Botox (750-1000U) C: Placebo dose matched Duration: 2 injections, 12 weeks apart, 24 weeks total time before assessment	Goal Attainment Scale: (+exp) Modified Ashworth Scale: (+exp) Modified Motor Assessment Scale: (-) Patient Disability Scale: (-)
Meythaler et al. (2009) RCT (6) N _{start} =21 N _{end} =18 TPS=Chronic	E: 100 U Botox (BTX-A) + therapy C: Saline + therapy	Motor Activity Log (-) Ashworth Scale (-) Barthel Index (-)
Simpson et al. (2009) RCT (8) Nstart=60 Nend=41 TPS=Subacute	E1: Up to 500 U of BoNT-Type A E2: Tizanidine C: Placebo	E1 vs C Modified Ashworth Scale (+exp) Disability Assessment Scale (+exp) E2 vs C Modified Ashworth Scale (-) Disability Assessment Scale (-) E1 vs E2 Modified Ashworth Scale (+exp) Disability Assessment Scale (+exp)
Jahangir et al. (2007) RCT (6) N _{start} =27 N _{end} =27 TPS=Chronic	E: 50 U Botox (BTX-A) C: Placebo	Modified Ashworth Scale (+exp) Barthel Index (-)
Suputtitada & Suwanwela (2005) RCT (6) Nstart=45 Nend=40 TPS=Chronic	E1: 350U BTX (Dysport) E2: 500U BTX (Dysport) E3: 1000U BTX (Dysport) C: Placebo	 E1/E2/E3 vs C Modified Ashworth Scale (+exp, +exp₂, +exp₃) E2/E3 vs C Action Research Arm Test (+exp₂, +exp₃) E1/E2 vs C Barthel Index (+exp, +exp₂)
Childers et al. (2004) RCT (7) N _{start} =91 N _{end} =91 TPS=Chronic	E1: 90U BTX (type A) E2: 180U BTX (type A) E3: 360U BTX (type A) C: Placebo	 E1/E2/E3 vs C Modified Ashworth Scale (+exp, +exp₂, +exp₃) Functional Independence Measure (-)
Brashear et al. (2002) RCT (7) N _{start} =126 N _{end} =122 TPS=Chronic	E: Botulinum toxin A (50 U) C: Placebo	Disability Assessment Scale (+exp) Ashworth Scale (+exp)
Bakheit et al. (2001) RCT (8)	E: Total of 1000 IU of BtxA (Dysport) into 5 muscles of the affected arm	Modified Ashworth Scale score (+exp) Active/passive range of motion (-)

N _{start} =59 N _{end} =58	C: Placebo injections	Barthel Index (-)
TPS=Chronic		
Bhakta et al. (2000)	E: Total of 1000 IU Dysport (n=20)	Modified Ashworth Scale (+exp)
RCT (7)	C: Placebo (n=20) divided between	Active range of motion (-)
N _{start} =40	elbow, wrist, and finger flexors	7 Notive range of motion ()
	elbow, wrist, and imger flexors	
Nend=38		
TPS=Chronic		
Smith et al. (2000)	E1: 500 U of botulinum toxin	E1/E2/E3 vs C
RCT (7)	E2: 1000 U of botulinum toxin	Modified Ashworth Scale at fingers (+exp)
N _{start} =25	E3: 1500 U of botulinum toxin	Active range of movement (-)
N _{end} =25	C: Placebo	Frenchay Arm Test (-)
TPS=Chronic		
Simpson et al. (1996)	E1: Single treatment of 75 U BTX-A	E1/E3 vs C
RCT (8)	E2: 150 U BTX-A	Modified Ashworth Scale (+exp ₁ , +exp ₃)
N _{start} =37	E3: 300 U BTXA	E1/E2/E3 vs C
N _{end} =37	C: Placebo	Functional Independence Measure (-)
TPS=Chronic	C. Flacebo	Fugl-Meyer Scale (-)
1PS=Chronic		ag. moyer coals ()
	Botulinum toxin B ve	ersus placebo
Gracies et al. (2014)	E1: 10000 U Botox (type B)	E1/E2 vs C
RCT (9)	E2: 15000 U Botox (type B)	Modified Ashworth Scale (-)
N _{Start} =24	C: Placebo	Modified Frenchay Scale (-)
N _{End} =24	C. I lacebo	()
TPS=Chronic		
	E 40000 H (DT)/ D	AA 150 LA L (L L ()
Brashear et al. (2004)	E: 10000 U of BTX-B	Modified Ashworth scale (-)
RCT (7)	C: Placebo	
N _{start} =15		
N _{end} =15		
TPS=Chronic		
Botulinur	n toxin A combined with upper limb re	ehabilitation versus botulinum toxin A
Devier et al. (2017)	E: OnabotulinumtoxinA with upper	Fugl-Meyer Assessment (+exp)
RCT (5)	limb rehabilitation	Modified Ashworth Scale (-)
N _{Start} =31	C: OnabotulinumtoxinA	Disability Assessment Scale (-)
N _{End} =29		
TPS=Chronic		
Onabot	ulinumtoxinA versus letibotulinumtox	inA, NABOTA, Neuronox, tizanidine
Do et al. (2017)	E: LetibotulinumtoxinA (Botulax)	Modified Ashworth Scale (-)
RCT (8)	C: OnabotulinumtoxinA	Global Assessment in Spasticity (-)
N _{Start} =187		Disability Assessment Scale (-)
N _{End} =169		, , , , , , , , , , , , , , , , , , , ,
TPS=Chronic		
Nam et al. (2015)	E: Botulinum toxin type A (NABOTA)	Modified Ashworth Scale (-)
RCT (7)	up to 360 U depending on degree of	Disability Assessment Scale (-)
N _{Start} =197	spasticity and muscle group	sas.inj . issess.insin oodio ()
N _{End} =177	C: Onabotulinum toxin A (Botox) up	
TPS=Subacute	to 360 U depending on degree of	
11 S=Subacule	spasticity and muscle group	
San et al. (2015)		Modified Ashworth Scale ()
Seo et al. (2015)	E1: 360 U Neu-BoNT-A (Neuronox) E2: 360 U Botox	Modified Ashworth Scale (-) Disability Assessment Scale (-)
RCT (10)	EZ. 300 U DUIUX	I i i i i i i i i i i i i i i i i i i i
N _{Start} =196		•
N _{End} =170		
TPS=Chronic		
Simpson et al. (2009)	E1: Up to 500 U of BoNT-Type A	<u>E1 vs C</u>
RCT (8)	E2: Tizanidine	Modified Ashworth Scale (+exp)
N _{start} =60	C: Placebo	Disability Assessment Scale (+exp)
N _{end} =41		E2 vs C
	1	I.

TPS=Subacute		Modified Ashworth Scale (-) Disability Assessment Scale (-)
		E1 vs E2
		Modified Ashworth Scale (+exp)
		Disability Assessment Scale (+exp)
	High versus low dosage	• • • • • • • • • • • • • • • • • • • •
Masakado et al. (2020)	E1: High dose botox A (400)	E1 Vs C1
RCT (7)	E2: Low dose botox A (400)	Modified Ashworth Scale – Wrist: (+exp1)
N _{start} = 100	C1: High dose placebo	Disability Assessment Scale: (-)
Nend= 90	C2: low dose placebo	bisability Assessment ocale. (-)
TPS= Not reported	Duration: 12wks	E1 Vs E2
Muli-site	Duration. 12wks	Modified Ashworth Scale – Wrist: (-)
Willi-Site		Disability Assessment Scale: (+exp1)
		bisability Assessment Scale. (Texp1)
		<u>E2 Vs C2</u>
		Modified Ashworth Scale – Wrist: (+exp2)
		Disability Assessment Scale: (-)
Francisco et al. (2002)	E1: High volume BTX-A (50 units/1	Modified Ashworth Scale: (-)
RCT (7)	mL saline: 1.2 mL delivered per	()
N _{start} =13	muscle)	
N _{end} =9	E2: Low volume BTX-A (100 units/1	
TPS=Acute	mL saline: 0.6 mL delivered per	
TF3=Acule	muscle)	
Botulinum toxin A con	nbined with adhesive taping versus botu	linum toxin A combined with manual muscle stretching,
	passive articular mobilization	
Santamato et. al (2015)	E: 50-200 U Botox (type A) +	Modified Ashworth Scale (+exp)
RCT (7)	adhesive taping for 10d	Disability Assessment Scale (+exp)
N _{Start} =70	C: 50-200 U Botox (type A) + manual	
N _{End} =70	muscle stretching, passive articular	
TPS=Chronic	mobilization, and palmar splint	
	Ultrasound guided botulinu	ım toxin A injections
Zeuner et al. (2017)	E: Ultrasound guided Botulinum	Modified Ashworth Scale (-)
RCT-Crossover (5)	Toxin A Injections followed by	Barthel Index (-)
N _{Start} =30	electromyographic (EMG) Guided	Disability Assessment Scale (-)
N _{End} =23	Botulinum Toxin A Injections (100-	
TPS=Chronic	400mu)	
	C: EMG Guided Botulinum Toxin A	
	Injections followed by Ultrasound	
	Guided Botulinum Toxin A Injections	
	(100-400mu)	
Picelli et al. (2014)	E1: Botox A Injections (500u) under	<u>E1 vs C</u>
RCT (8)	sonographic guidance	Modified Ashworth Scale (+exp)
N _{Start} =60	E2: Botox A Injection (500u) using	Tardieu Spasticity angle (+exp)
N _{End} =60	electrical stimulation guidance	Passive range of motion (+exp)
TPS=Chronic	C: Botox A Injection (500u) using	E2 vs C
	manual needle placement	Modified Ashworth Scale (wrist): (+exp ₂)
		Tardieu Spasticity angle (+exp ₂)
		Passive range of motion (+exp ₂)
		<u>E1 vs E2</u>
		Modified Ashworth Scale (-)
		Tardieu Spasticity angle (-)
		Passive range of motion (-)

Santamato et al. (2014) RCT (4) Nstart=30 NEnd=30 TPS=Chronic	E: BoNT-A injection using ultrasound guidance (dosages determined by investigator) C: BoNT-A using manual needle placement via palpitation and anatomical landmarks (dosages determined by investigator)	Modified Ashworth Scale (+exp)
	Botulinum toxin A comb	ined with NMES
Marvulli et al. (2016) RCT (6) NStart=36 NEnd=36 TPS=Chronic	E: Botulinum toxin A therapy (118±34 U) + occupational therapy (OT) + functional electrical stimulation C: Botulinum toxin A therapy (116±36 U) + OT Duration: <i>Not Specified</i>	Modified Ashworth Scale (+exp) Passive range of Motion (+exp) Action Research Arm Test (+exp)
Hesse et al. (1998) RCT (7) Nstart=24 Nend=24 TPS=Chronic	E1: 1000 U Btx A + cyclic NMES E2: 1000 U of Btx A E3: Placebo + cyclic NMES C: Placebo Duration: Daily injections for 3 mo For electrical stimulation: 30 min/d, 2d/ wk for 4 wk	E1 vs E2 vs E3 vs C • Modified Ashworth Scale (-) E1 vs E2/C • Reduction in difficulties with cleaning palm (+exp)
	Botulinum toxin A combi	ned with mCIMT
Nasb et al. (2019) RCT (6) Nstart= 64 Nend= 53 TPS= Subacute	E: Botox + mCIMT C: Botox + Conventional therapy Duration: 1hr, 6x/wk, 4wks rehab (glove 3hr total for mCIMT)	Modified Ashworth Scale:
Sun et al. (2010) RCT (6) Nstart=32 Nend=32 TPS=Chronic	E: 1,000 U Dysport + mCIMT C: 1,000 U Dysport + conventional rehabilitation Duration : 2hr/d, 3d/wk for 3 mo	Modified Ashworth Scale (+exp) Motor Activity Log (+exp) Action Research Arm Test (+exp)
Botulinu	m toxin A combined with task-specifi	c training versus task-specific training
Umar et al. (2018) RCT (5) N _{Start} =46 N _{End} =41 TPS=NR	E: Botulinum Toxin A with Task- Specific Training C: Task-Specific Training	Fugl-Meyer Assessment (-) Motor Assessment Scale (-)
	Botulinum Toxin A combin	ed with Orthotics
Giray et al. (2019) RCT (7) N _{start} = 20 N _{end} = 20 TPS= Not reported (over 3mo)	E: Botox + lycra orthosis C: Botox only Duration: (Ortho 8hrs/d, 5d/wk, 3wks (rehab 2hrs/d,5d/wk, 3wks	Fugle-Meyers Assessment Upper Extremity: (-) Modified Ashworth Scale: Elbow: (-) Wrist: (-) Finger Thumb: (-) Pronation: (-) Motricity Index Upper Extremity: (-) Box and Block Test: (-) Stroke Impact Scale: (-)
	Botulinum Toxin A combin	
Gandolfi et al. (2019) RCT (8) N _{start} = 32 N _{end} = 32 TPS= Chronic	E: Robot assisted therapy + Botox (end efficacy) C: Conventional therapy with Botox Duration: 45min, 2x/wk, 5wks	Modified Ashworth Scale: (-) Fugle-Meyers Assessment Upper Extremity: (-) Medical Research Council Scale (Upper Limb): (+exp) Shoulder Flexion: (-) Shoulder Abduction: (+exp)

 Shoulder Rotation: (+exp) Elbow Flexion: (+exp) Elbow Extension: (-) Forearm Supination: (-)
Wrist Flexion: (-)Wrist Extension: (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Botulinum Toxin

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Botulinum toxin A may not have a difference in efficacy when compared to placebo, no injection or conventional therapy for improving motor function.	12	Wallace et al. 2020; Prazeres et al. 2018; Rosales et al. 2018; Hesse et al. 2012; Marciniak et al. 2012; Rosales et al. 2012; Wolf et al. 2012; Shaw et al. 2011; Shaw et al. 2010; McCrory et al. 2009; Suputtitada and Suwanwela, 2005; Simpson et al. 1996
2	Botulinum toxin A combined with upper limb rehabilitation may produce greater improvements in motor function than botulinum toxin A alone.	1	Devier et al. 2017
1b	Botulinum toxin A combined with functional electrical stimulation may produce greater improvements in motor function than botulinum toxin A.	1	Marvulli et al. 2016
1a	Botulinum toxin A combined with mCIMT may produce greater improvements in motor function than botulinum toxin A.	2	Nasb et al. 2019; Sun et al. 2010
2	Botulinum toxin A combined with task-specific training may not have a difference in efficacy when compared to task-specific training alone for improving motor function.	1	Umar et al. 2018
1b	Botulinum toxin A combined with orthotics may not have a difference in efficacy when compared to botulinium toxin alone for improving motor function.	1	Giray et al. 2019
1b	Botulinum toxin A combined with robotics may not have a difference in efficacy when compared to botulinium toxin alone for improving motor function.	1	Gandolfi et al. 2019

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Botulinum toxin A may not have a difference in efficacy when compared to placebo, no injection or	16	Rekand et al. 2019; Ward et al. 2016; Wissel et al. 2016; Lam et al. 2012; Marcinak et al. 2012; Rosales et al. 2012; Shaw et al. 2011; Shaw et al. 2010; McCrory

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

	conventional therapy for improving performance of activities of daily living.		et al. 2009; Meythaler et al. 2009; Jahangir et al. 2007; Suputtiada & Suwanwela, 2005; Childers et al. 2004; Bakheit et al. 2001; Smith et al. 2000; Simpson et al. 1996
1b	Botulinum toxin B may not have a difference in efficacy when compared to placebo for improving performance of activities of daily living.	1	Gracies et al. 2014
2	Ultrasound guided botulinum toxin A injections may not have a difference in efficacy when compared to electromyography guided botulinum toxin A injections for improving performance of activities of daily living.	1	Zeuner et al. 2017
1a	Botulinum toxin A combined with mCIMT may produce greater improvements in performance of activities of daily living than botulinum toxin A.	2	Nasb et al. 2019; Sun et al. 2010
2	Botulinum toxin A combined with task-specific training may not have a difference in efficacy when compared to task-specific training alone for improving performance of activities of daily living.	1	Umar et al. 2018
1b	Botulinum toxin A combined with orthotics may not have a difference in efficacy when compared to botulinium toxin alone for improving performance on activities of daily living.	1	Giray et al. 2019

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Botulinum toxin A may not have a difference in efficacy when compared to placebo, no injection or conventional therapy for improving dexterity.	3	Wallace et al. 2020; Shaw et al. 2011; Shaw et al. 2010	
1b	Botulinum toxin A combined with orthotics may not have a difference in efficacy when compared to botulinium toxin alone for improving dexterity.	1	Giray et al. 2019	

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1a	Botulinum toxin A may not have a difference in efficacy when compared to placebo, no injection or conventional therapy for improving range of motion.	7	Wallace et al. 2020; Lam et al. 2012; Marciniak et al. 2012; Rosales et al. 2012; Bakheit et al. 2001; Bhakta et al. 2000; Smith et al. 2000	
1b	Ultrasound guided botulinum toxin A injections may produce greater improvements in range of motion than manual needle placement injections.	1	Picelli et al. 2014	
1b	Electrical stimulation guided botulinum toxin A injections may produce greater improvements in	1	Picelli et al. 2014	

	range of motion than manual needle placement injections.		
1b	Ultrasound guided botulinum toxin A injections may not have a difference in efficacy when compared to electrical stimulation guided botulinum toxin A injections for improving range of motion.	1	Picelli et al. 2014
1b	Botulinum toxin A combined with functional electrical stimulation may produce greater improvements in range of motion than botulinum toxin A.	1	Marvulli et al. 2016

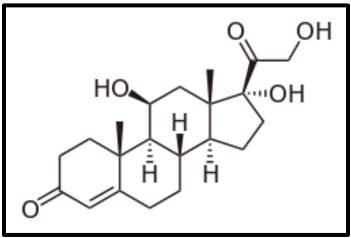
STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Botulinum toxin A may not have a difference in efficacy when compared to placebo, no injection or conventional therapy for improving measures of stroke severity.	1	Rosales et al. 2012	

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of Botulinium Toxin A to improve muscle strength when compared to placebo , no injection or conventional therapy .	2	Wallace et al. 2020; Shaw et al. 2010
1b	Botulinum toxin A combined with orthotics may not have a difference in efficacy when compared to botulinium toxin alone for improving muscle strength.	1	Giray et al. 2019
1b	Botulinum toxin A combined with robotics may not have a difference in efficacy when compared to botulinium toxin alone for improving muscle strength.	1	Gandolfi et al. 2019

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	Botulinum toxin A may produce greater improvements in spasticity than placebo, no injection or conventional therapy.	26	Masakdo et al. 2020; Wallace et al. 2020; Rekand et al. 2019; Prazeres et al. 2018; Rosales et al. 2018; Elovic et al. 2016; Gracies et al. 2015; Hesse et al. 2012; Lam et al. 2012; Marciniak et al. 2012; Marciniak et al. 2012; Rosales et al. 2012; Shaw et al. 2010; Kanovsky et al. 2009; McCrory et al. 2009; Mcythaler et al. 2009; Simpson et al. 2007; Suputitiada and Suwanwela, 2005; Childers et al. 2004; Brashear et al. 2002; Bakheit et al. 2001; Bhakta et al. 2000; Smith et al. 2000; Simpson et al. 1996

		ı	T
	Botulinum toxin B may not have a difference in		Gracies et al. 2014; Brashear et al. 2004
1a	efficacy when compared to placebo for improving	2	Diasileal et al. 2004
	spasticity.		
	Botulinum toxin A combined with upper limb		Devier et al. 2017
	rehabilitation may not have a difference in efficacy		
2	when compared to botulinum toxin A alone for	1	
	·		
	improving spasticity.		Do et al. 2017; Nam
41	LetibotulinumtoxinA, NABOTA and neuronox may		et al. 2015; Seo et
1b	not have a difference in efficacy when compared to	3	al. 2015
	onabotulinumtoxinA for improving spasticity.		
4.1	Botulinum toxin A may produce greater		Simpson et al. 2009
1b	improvements in spasticity than tizanidine .	1	
	High walkings hat discuss to via A many act have a		Francisco et al. 2002
41-	High volume botulinum toxin A may not have a		1 1a1101300 Et al. 2002
1b	difference in efficacy when compared to low volume	1	
	botulinum toxin A for improving spasticity.		Contonicial
	Botulinum toxin A combined with adhesive taping		Santamato et al. 2015
	may produce greater improvements in spasticity than		2010
1b	botulinum toxin A combined with manual muscle	1	
	stretching, passive articular mobilization, and		
	palmar splinting.		
	Ultrasound guided botulinum toxin A injections		Zeuner et al. 2017
	may not have a difference in efficacy when compared		
2	to electromyography guided botulinum toxin A	1	
	injections for improving spasticity.		
	Ultrasound guided botulinum toxin A injections		Santamato et al.
1b	may produce greater improvements in spasticity than	2	2014; Picelli et al.
10	manual needle placement injections.	_	2014
	Electrical stimulation guided botulinum toxin A		Picelli et al. 2014
	injections may produce greater improvements in		
1b		1	
	spasticity than manual needle placement injections.		
	Illiano aund guided betulieum tevin A iniestiese		Picelli et al. 2014
	Ultrasound guided botulinum toxin A injections		1 100m Ct al. 2014
1b	may not have a difference in efficacy when compared	1	
	to electrical stimulation guided botulinum toxin A		
	injections for improving spasticity.		Manualli at 1 0016
	Botulinum toxin A combined with functional		Marvulli et al. 2016
1b	electrical stimulation may produce greater	1	
	improvements in spasticity than botulinum toxin A .		
	Botulinum toxin A combined with cyclic NMES may		Hesse et al. 1998
1 h	not have a difference in efficacy when compared to	4	
1b	botulinum toxin A, cyclic NMES, or placebo for	1	
	improving spasticity.		
	There is conflicting evidence about the effect of		Nasb et al. 2019;
4.	Botulinum toxin A combined with mCIMT to improve		Sun et al. 2010
1a	spasticity when compared to botulinum toxin alone .	2	
	opasion, mion compared to betain an textil diener		
	Botulinum toxin A combined with orthotics may not		Giray et al. 2019
1b	have a difference in efficacy when compared to	1	
110		'	
	botulinium toxin alone for improving spasticity.		

	Botulinum toxin A combined with robotics may not		Gandolfi et al. 2019
b	have a difference in efficacy when compared to	1	
	botulinium toxin alone for improving spasticity.		


Key points

Botulinum A likely improves spasticity in the upper limb following stroke, but not range of motion or activities of daily living. The effect on general upper limb motor function is conflicting and less clear.

Botulinum toxin A in combination with other types of therapeutic approaches may be beneficial for certain aspects of upper limb function.

Botulinum toxin B has been less well studied to date in comparison to botulinum toxin A.

Steroids

Adopted from: https://en.wikipedia.org/wiki/Corticosteroid

Corticosteroids have been used to treat pain and functional limitations in hemiplegic patients (Dogan et al. 2013). Patients suffering from stroke experience high rates of inflammation and corticosteroids are prescribed to lessen the inflammation (Yasar et al. 2011).

The methodological details and results of a single RCT (Yasar et al. 2011) evaluating intraarticular steroid use for upper extremity motor rehabilitation are presented in Table 32.

Table 32. RCT Intra-articular Steroid Use for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Yasar et al. (2011) RCT (9) Nstart=26 Nend=26 TPS=Subacute	E1: Intra-Articular Steroid Injection E2: Suprascapular Nerve Block Injection Duration: <i>Not Specified</i>	Range of Motion (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at $\alpha \text{=}0.05$ in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

Conclusions about Steroids

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
	Intra-articular steroid injections may not have a	4	Yasar et al. 2011
1b	difference in efficacy when compared to suprascapular nerve block injections for improving	1	
	range of motion.		

Key points

There is little reported literature on steroid use for upper limb rehabilitation following stroke. Steroid injections may not be beneficial for upper limb rehabilitation following stroke.

Cerebrolysin

Adopted from: http://www.gerovitalshop.eu/it/home/18-cerebrolysin-5ml.html

Cerebrolysin contains low molecular weight neuropeptides and free amino acids which are believed to have neuroprotective properties, inhibit free radical formation, reduce neuroinflammation, and activate calpain apoptosis (Muresanu et al. 2016).

Two RCTs were identified comparing cerebrolysin to a placebo (Chang et al. 2016; Muresanu et al. 2016).

The methodological details and results of two RCTs evaluating cerebrolysin for upper extremity motor rehabilitation are presented in Table 33.

Table 33, RCTs Evaluating Cerebrolysin for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Sizestart Sample Sizeend Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Chang et al. (2016) RCT (6) Nstart=70 Nend=66 TPS=Acute	E: Cerebrolysin (30mL diluted with 70mL saline) + conventional therapy C: Placebo + conventional therapy Duration: 1x/d for 6wk	 Action Research Arm Test (+exp) National Institute of Health Stroke Scale (+exp) Barthel Index (+exp) Modified Rankin Scale (+exp)
Muresanu et al. (2016) RCT (9) Nstart=208 Nend=196 TPS=Acute	E: Cerebrolysin (30mL diluted with 70mL saline) + physical/occupational therapy C: Placebo + physical/occupational therapy Duration: 1x/d for 3wk	Fugl-Meyer Assessment (+exp)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

- +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group
- +exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group
- +con indicates a statistically significant between groups difference at α =0.05 in favour of the control group
- indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

Conclusions about Cerebrolysin

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Cerebrolysin may produce greater improvements in motor function than placebo .	2	Chang et al. 2016; Muresanu et al. 2016

ACTIVITIES OF DAILY LIVING			
LoE	LoE Conclusion Statement		References
1b	Cerebrolysin may produce greater improvements in activities of daily living than placebo .	1	Chang et al. 2016

STROKE SEVERITY			
LoE	Conclusion Statement	RCTs	References
1b	Cerebrolysin may produce greater improvements in measures of stroke severity than placebo .	1	Chang et al. 2016

Key points

Cerebrolysin may be beneficial for aspects of upper limb function following stroke.

Levodopa

neric-products/generic-products-catalog/carbidopalevodopa-tablets/

Levodopa has been the hallmark pharmaceutical for the treatment of Parkinson's disease. However, its ability to affect motor movements in Parkison's disease is limited by its narrow therapeutic window, short half-life, and poor bioavailability (Tambassco et al. 2018).

Two RCTs were indentified comparing levodopa to a placebo (Rosser et al. 2008; Restemeyer et al. 2007).

The methodological details and results of two RCTs evaluating levodopa treatment for upper extremity motor rehabilitation in stroke survivors are presented in Table 34.

Table 34. RCTs Evaluating Levodopa Interventions for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Rosser et al. (2008) RCT (5) N _{start} =18 N _{end} =18 TPS=Chronic	E: Levodopa (100mg) + Cabidopa (25mg) C: Placebo (125mg) Duration: 1hr physio (3x) + Levodopa (3x)	Performance in a simple motor task (+exp)
Restemeyer et al. (2007) RCT (9) N _{start} =10 N _{end} =10 TPS=Chronic	E: Levodopa (100mg) C: Placebo (100mg) Duration: 1hr physio (2x) + Levodopa (2x)	 Nine Hole Peg Test (-) Grip strength (-) Action Research Arm Test (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

+con indicates a statistically significant between groups difference at $\alpha = 0.05$ in favour of the control group - indicates no statistically significant between groups differences at $\alpha = 0.05$

Conclusions about Levodopa

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1b	There is conflicting evidence about the effect of Levodopa to improve motor function when compared to placebo .	2	Rosser et al. 2008; Restemeyer et al. 2007	

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1b	Levodopa may not have a difference in efficacy when compared to placebo for improving muscle strength.	1	Restemeyer et al. 2007	

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Levodopa may not have a difference in efficacy when compared to placebo for improving dexterity.	1	Restemeyer et al. 2007	

Key points

The evidence is mixed regarding Levodopa for upper limb rehabilitation following stroke.

Statins and Antihypertensives

HMG-CoA reductase inhibitors (statins) are widely used worldwide due to their antiatherosclerotic, anti-inflammatory, and immunomodulatory properties (Lin et al. 2015). This suggests that statins may have a beneficial role in infection, in fact, statins are found to have beneficial effects on the prevention and treatment of infections in diseases including cerebrovascular accidents (Lin et al. 2015). Statins are also believed to have a neuroprotective effect and are conducive to promoting autophagy in neurological disorders (Lin et al. 2015). Some antihypertenives have also been examined for stroke recovery.

Three RCTs were identified that examined statins and antihypertensives.

Two RCTs compared atorvastatin with a placebo (Zhang et al. 2017; Wang et al. 2017). One RCT compared antihypertensives (Jose et al. 2017)

The methodological details and results of the three RCTs evaluating atorvastatin and anthypertensives for upper extremity motor rehabilitation are presented in Table 35.

Table 35. RCT Evaluating Atorvastatin and Antihypertenantisives Use for Upper **Extremity Motor Rehabilitation**

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Wang et al. (2017) RCT (5) Nstart=96 Nend=96 TPS=NR	E: (atorvastatin (20 mg) and clopidogrel (75 mg) daily) C: Conventional care Duration: 3months	Fugl Meyer Assessment (+exp) Barthel Index (+exp)
Zhang et al. (2017) RCT (6) Nstart=78 NEnd=75 TPS=Acute	E: Atorvastatin (20mg) C: Placebo (20mg) Duration: Atorvastatin daily for 6wk	Modified Rankin Scale (+exp) Barthel Index (+exp) NIHSS (-)
	Antihypertensives	
Jose et al. (2017) RCT (5) Nstart= 110 Nend= 98 TPS= Not reported	E1: Telmisartan E2: Amlodipine C: Mannitol Duration: Not reported	 E1 Vs C National Institute of Health Stroke Scale (+exp1) E2 Vs C National Institute of Health Stroke Scale (+exp1) E1 Vs E2 National Institute of Health Stroke Scale (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks. +exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

Conclusions about Atorvastatin

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
2	Atorvastatin may produce greater improvements in motor function placebo	1	Wang et al. 2017	

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1b	Atorvastatin may produce greater improvements in activities of daily living than placebo.	2	Wang et al. 2017; Zhang et al. 2017	

STROKE SEVERITY					
LoE	Conclusion Statement	RCTs	References		
1b	There is conflicting evidence about the effect of atorvastatin to improve measures of stroke severity when compared to placebo.	1	Zhang et al. 2017		
2	Telmisartan may produce greater improvements in measures of stroke severity than mannitol or amlodipine .	1	Joese et al., 2017		

Key points

The evidence is mixed regarding atorvastatin for upper limb rehabilitation following stroke.

Antidepressants

Antidepressants of various kinds are available for medical use, including tricyclics (TCAs), monoamine oxidase inhibitors (MAOIs), selective serotonin reuptake inhibitors (SSRIs), serotonin-noradrenaline reuptake inhibitors (SNRIs, such as venlafaxine, duloxetine and milnacipran), and other agents (mirtazapine, reboxetine, bupropion). SSRIs and SNRIs are two commonly prescribed agents that work by acting to inhibit the reuptake of serotonin and norepinephrine, respectively, from the synaptic cleft (Cipriani et al. 2012). Beyond their ability to improve depression following stroke, antidepressants can be used to enhance upper extremity motor recovery through changes in neurotransmission. There is evidence suggesting that serotoninergic modulation may be involved in motor recovery post stroke. Previous research has suggested that patients who have reacted well to antidepressant treatment may also demonstrate improvements in upper limb motor functioning (Chemerinski et al. 2001). Furthermore, there are reports that single doses of selective serotonin reuptake inhibitors (SSRIs), such as fluoxetine and paroxetine, have resulted in activation of the motor cortices (Dam et al. 1996: Pariente et al. 2001) therefore, manipulation of neurochemicals may influence aspects of function other than psychological distress. Moreover, there is evidence to suggest that noradrenergic reuptake inhibitors (NRIs) increase motor cortex excitability (Plewnia et al. 2002).

Nine RCTs were identified that examined antidepressants.

Six RCTs compared antidepressants to placebo (Ward et al. 2017; Mohammadianinejad et al. 2014; Chollet et al. 2011; Berends et al. 2009; Zittel et al. 2008; Zittel et al. 2007). One RCT compared fluoxetine and rTMS combined (Bonin Pinto et al. 2019). Two RCTs compared nortriptyline to fluoxetine (Mikami et al. 2011; Robinson et al. 2000).

The methodological details and results of the nine RCTs evaluating antidepressants for upper extremity motor rehabilitation are presented in Table 36.

Table 36. RCTs Evaluating Antidepressants Interventions for Upper Extremity Motor Rehabilitation

Rehabilitation		
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
Ward et al. (2017) RCT (7) NStart = 12 NEnd = 9 TPS=Chronic	E: Atomoxetine 40 mg with Task- Oriented Upper Extremity Training C: Placebo with Task-Oriented Upper Extremity Training	Fugl-Meyer Assessment (+exp) Action Research Arm Test (-) Wolf Motor Function Test (-)
Mohammadianinejad et al. (2014) RCT (6) N _{Start} =80 N _{End} =66 TPS=Acute	E: Lithium carbonate (300mg) C: Placebo Duration: Lithium Carbonate 300mg (2x/d) for 30d	National Institutes of Health Stroke Scale (+exp) Fugl-Meyer Assessment (+exp)
Chollet et al. (2011) RCT (9) Nstart=118 Nend=113 TPS=Chronic	E: Fluoxetine (20mg) C: Placebo Duration: Ingested daily (orally) for 3mo	 Fugl Meyer Assessment (+exp) National Institutes of Health Stroke Scale (-) Modified Rankin Scale (+exp)
Berends et al. (2009) RCT Crossover (8) N _{start} = 10 N _{end} = 10 TPS= Chronic	E: Fluoextine C: Placebo Duration: Single dose	Grip Strength: (-) Motricity Index: (-)
Zittel et al. (2008) RCT (8) N _{start} =8 N _{end} =8 TPS=Chronic	E: Citalopram (40mg) C: Placebo (40mg) Duration: Citalopram (2x)	Nine Hole Peg Test (+exp) Hand grip strength (-)
Zittel et al. (2007) RCT (6) Nstart=10 Nend=10 TPS=Chronic	E: Reboxetine (6mg) C: Placebo (6mg) Duration: Reboxetine (2x)	Tapping speed (+exp) Grip strength (+exp)
11 0-0110110	Fluoxetine and rTM	IS
Bonin Pinto et al. (2019) RCT (8) Nstart= 27 Nend= 26 TPS= Chronic	E: Low frequency rTMS + Fluoxetine C1: Fluoxetine (20mg, 90d) C2: Placebo Duration: 18x, 5d/wk for 2 wks, 1x/wk for 8wks 20min)	E vs C1 Jebson Hand Function Test: (+exp) Fugl Meyer Assessment: (+exp) E vs C2 Jebson Hand Function Test: (+exp) Fugl Meyer Assessment: (+exp) C1 vs C2 Jebson Hand Function Test: (+con2) Fugl Meyer Assessment: (+con2)
Mikami et al. (2011)	Notriptyline + Fluoxetine ve	
Mikami et al. (2011) RCT (8) 1 yr follow-up analysis of Robinson et al. 2000 N _{start} =104 N _{end} =97 TPS=Chronic	E1: Nortriptyline (100mg) E2: Fluoxetine (40mg) C: Placebo Duration: Fluoxetine or Nortriptyline daily for 12wk	 E1/E2 vs C Modified Rankin Scale (+exp₁, +exp₂)
Robinson et al. (2000) RCT (8) N _{start} =104	E1: Nortriptyline (100mg) E2: Fluoxetine (40mg) C: Placebo	E1 vs E2/C ■ Functional Independence Measure (+exp ₁)

N _{end} =97	Duration: Fluoxetine or Nortriptyline	
TPS=Chronic	daily for 12wk	

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Antidepressants

MOTOR FUNCTION					
LoE	Conclusion Statement	RCTs	References		
1a	There is conflicting evidence about the effect of antidepressants to improve motor function when compared to placebo treatment.	4	Bonino Pinto et al. 2019; Ward et al. 2017; Mohammadianinejad et al. 2014; Chollet et al. 2011		
1b	Fluoxetine with rTMS may produce greater improvements in motor function than fluoxdetine alone or placebo treatment.	1	Bonino Pinto et al. 2019		

MUSCLE STRENGTH				
LoE	Conclusion Statement	RCTs	References	
1a	Antipressants may not have a difference in efficacy when compared to placebo treatment for improving muscle strength.	3	Bereneds et al. 2009; Zittel et al. 2008; Zittel et al. 2007	

ACTIVITIES OF DAILY LIVING					
LoE	LoE Conclusion Statement RCTs References				
1b	Antidepressants may produce greater improvements in performance of activities of daily living than placebo treatment.	1	Robinson et al. 2000		

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Antidepressants may produce greater improvements in dexterity than placebo treatment.	3	Bonino Pinto et al. 2019; Zittel et al. 2008; Zittel et al. 2007;	
1b	Fluoxetine with rTMS may produce greater improvements in dexterity than fluoxetine alone or placebo treatment.	1	Bonino Pinto et al. 2019	

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Antidepressants may produce greater improvements in measures of stroke severity than placebo treatment.	3	Mohammadianinejad et al. 2014; Chollet et al. 2011; Mikami et al. 2011	

Key points

Antidepressants may be beneficial for aspects of upper limb function following stroke.

Central Nervous System Stimulants

Central nervous system stimulants are drugs that increase cortical excitability, often provided to manage arousal states by enhancing neural transmission. Central nervous system stimulants increase the synaptic concentration and transmission of dopamine, serotonin, and noradrenaline throughout the brain, and neurobehavioral gains ascribed to central nervous system stimulants include enhanced arousal, mental processing speed, and/or motor processing speed (Herrold et al. 2014). Common stimulants used in rehabilitation include amphetamines and methylphenidates. Methylphenidate has been shown to enhance motor recovery after partial cortex ablation in rodents, and to modulate poststroke cerebral reorganization, improving motor function in stroke patients (Wang et al. 2014). Stimulants such as amphetamines have been reported to enhance plasticity through axonal sprouting (Papadopoulos et al. 2009). Some pharmacetuicals, like theophylline, can act by modulating GABA neurotransmission and decrease inhibition to indirectly increase neuronal excitability (Schambra et al. 2016).

Six RCTs were identified that examined central nervous stimulants.

Four RCTs compared a central nervous stimulant to placebo (Schuster et al. 2011; Gladstone et al. 2006; Tardy et al. 2006; Platz et al. 2005a). One RCT examined methylphenidate in combination with dual tDCS (Wang et al. 2014). One RCT compared theophylline to placebo (Schambra et al. 2016).

The methodological details and results of the six RCTs evaluating antidepressants for upper extremity motor rehabilitation are presented in Table 37.

Table 37. RCTs Evaluating Central Nervous Stimulants for Upper Extremity Motor Rehabilitation

Authors (Year)	Interventions	Outcome Measures
Study Design (PEDro Score)	Duration: Session length,	Result (direction of effect)
Sample Sizestart	frequency per week for total	, ,
Sample Sizeend	number of weeks	
Time post stroke category		
Schuster et al. (2011)	E: Dexamphetamine (10mg)	Chedoke-McMaster Stroke Assessment (+exp)
RCT (9)	C: Placebo	
N _{start} =16	Duration: 20min/d, 2d/wk for 5wk	
N _{end} =15		
TPS=Chronic		
Gladstone et al. (2006)	E: Dextroamphetamine (10mg, 90min	Fugle-Meyers Assessment Upper Extremity (-)
RCT (7)	before physiotherapy)	Functional Independence Measure: (-)
N _{start} = 71	C: Placebo	Chedoke-Mcmaster Disability Inventory: (-)
N _{end} = 67	Duration: 2x/wk, 5wks	
TPS=Acute		
Multi-Site		
T	F. Matterdale and data (00mm)	Figure (and a second (and)
Tardy et al. (2006)	E: Methylphenidate (20mg) C: Placebo	Finger tapping scores (+exp)
RCT (9)		Hand grip strength (-)
N _{start} =8 N _{end} =8	Duration: 2d/wk for 4wk	
TPS=Chronic		
Platz et al. (2005a)	E: d-amphetamine (10mg)	TEMPA (+exp)
RCT (9)	C: Placebo	TEMI A (TEXP)
N _{start} =31	Duration: 45min/d, 3d/wk for 4wk	
Nend=29	Buration. 45mm/a, 5a/wk for 4wk	
TPS=Chronic		
11 0-01101110	Methylphenidate + t	DCS
Wong et al. (2014)	E1: Dual tDCS + methylphenidate	E1 vs E2/E3
Wang et al. (2014) RCT (7)	(20mg)	Purdue Pegboard Test: (+exp)
N _{start} =9	E2: Dual tDCS + placebo drug	• Fuldue Fegodalu Test. (+exp)
Nstart=9 Nend=9	E3: Sham tDCS + methylphenidate	
TPS=Subacute	C: Sham tDCS + placebo drug	
TF3=Subacule	Duration: 20min/d, 3d/wk for 4wk	
	Theophylline vs Place	l ebo
Cohambra et al. (2016)		
Schambra et al. (2016) RCT (6)	E: Theophylline C: Placebo	Pinch strength: (-) Nino Holo Bog Tost: (-)
N _{start} = 20	Duration: 1 dose, 300mg, 1wk	Nine Hole Peg Test: (-)
N _{start} = 20 N _{end} = 18	minimum washout period	
TPS= Chronic	for conditions	
		 hours: Min=minutes: RCT=randomized controlled trial: TPS=time

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Central Nervous Stimulants

MOTOR FUNCTION					
LoE	Conclusion Statement	RCTs	References		
1a	Dexamphetamine and methylphenidate may produce greater improvements in motor function than placebo treatment.	3	Schuster et al. 2011; Gladstone et al. 2006; Platz 2005a		

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

MUSCLE STRENGTH						
LoE	LoE Conclusion Statement RCTs References					
1b	Dexamphetamine and methylphenidate may not have a difference in efficacy when compared to placebo treatment for improving muscle strength.	1	Tardy et al. 2006			
1b	theophylline may not have a difference in efficacy when compared to placebo treatment for improving muscle strength.	1	Schambra et al. 2016			

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Dexamphetamine and methylphenidate may produce greater improvements in dexterity than placebo treatment.	1	Tardy et al. 2006	
1b	Methylphenidate combined with dual tDCS may produce greater improvements in dexterity than dual tDCS or methylphenidate.	1	Wang et al. 2014	
1b	theophylline may not have a difference in efficacy when compared to placebo treatment for improving dexterity.	1	Schambra et al. 2016	

ACTIVITIES OF DAILY LIVING						
LoE	LoE Conclusion Statement RCTs References					
1b	Dexamphetamine and methylphenidate may produce greater improvements in performance of activities of daily living than placebo treatment .	1	Gladstone et al. 2006			

Key points

Dexamphetamine or methylphenidate may be beneficial for aspects of upper limb function following stroke.

Methylphenidate combined with dual transcranial direct current stimulation may be beneficial for upper limb rehabilitation following stroke.

Neuroprotectants

Adopted from: https://mstrust.org.uk/a-z/neuroprotection

During ischemic stroke there is rapid reduction in cerebral blood flow, leading to reduced perfusion of oxygen and nutrients to brain area impacted by the occlusion. Depletion of ATP production in neurons initiates a cascade of pathophysiological processes that include rising intracellular calcium and production of inflammatory cytokines (Jeyaseelan et al. 2008). Compensatory mechanisms contribute to membrane destabilization, mitochondrial dysfunction and apoptosis causing cellular damage (Jeyaseelan et al. 2008). Neuroprotectants are a class of compounds that aim to protect the postischemic neuronal tissue from the aforementioned pathological process' and include calcium and glutamate antagonists, AMPA antagonists' free radical scavengers and anti-inflammatory agents (Lyden and Wahlgren 2000). Many of these compounds have shown promise in pre-clinical models but few have made successful transition to human application (Lyden and Wahlgren 2000).

The methodological details and results of the two RCTs are presented Table 38.

Table 38. RCTs Evaluating Neuroprotectant Pharmaceuticals for Upper Extremity Motor Rehabilitation

Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)
	Traditional Medicir	es
Kong et al. (2009) RCT (7) Nstart=40 Nend=32 TPS=acute	E: NeuroAid (MLC 601) C: Placebo Duration: 4 capsules 3 times a day for 4 weeks	 Fugl-Meyers Assessment (-) National Institute of Stroke Scale (-) Functional independence measure (-)
	Phosphodiesterase inh	ibitors
Di Cesare et al. 2016 RCT (10) Nstart=139 Nend=137 TPS=acute	E: Phosphodiesterase inhibitor 6mg C: Placebo Duration: 1 6mg capsule/day for 90 days	 Modified Rankin Scale (-) National Institute of Stroke Scale (-) Barthel Index (-) Box and Block Test (-) Grip Strength (-)

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Neuroprotectants

MOTOR FUNCTION					
LoE	Conclusion Statement	RCTs	References		
415	Neuroaid may not have a difference in efficacy when	4	Kong et al. 2009		
1b	compared to placebo treatment for improving motor function.	1			

MUSCLE STRENGTH					
LoE	LoE Conclusion Statement RCTs References				
1b	Phosphodiesterase inhibitors may not have a difference in efficacy when compared to placebo treatment for improving muscle strength.	1	Di Cesare et al. 2016		

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Phosphodiesterase inhibitors may not have a difference in efficacy when compared to placebo treatment for improving dexterity.	1	Di Cesare et al. 2016	

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at α =0.05

ACTIVITIES OF DAILY LIVING				
LoE	Conclusion Statement	RCTs	References	
1b	Neuroaid may not have a difference in efficacy when compared to placebo treatment for improving performance on activities of daily living	1	Kong et al. 2009	
1b	Phosphodiesterase inhibitors may not have a difference in efficacy when compared to placebo treatment for improving performance on activities of daily living.	1	Di Cesare et al. 2016	

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Neuroaid may not have a difference in efficacy when compared to placebo treatment for improving measures of stroke severity.	1	Kong et al. 2009	
1b	Phosphodiesterase inhibitors may not have a difference in efficacy when compared to placebo treatment for improving measures of stroke severity.	1	Di Cesare et al. 2016	

Key points

Neuroprotectants may not be beneficial for upper limb rehabilitation

Complementary and alternative medicine

Acupuncture

Adopted from: https://www.mccaffrevhealth.com/acupuncture-for-chronic-pain/

The use of acupuncture has recently gained attention as an adjunct to stroke rehabilitation in Western countries even though acupuncture has been a primary treatment method in China for about 2000 years (Baldry, 2005). In China, acupuncture is an acceptable, time-efficient, simple, safe and economical form of treatment used to ameliorate motor, sensation, verbal communication and further neurological functions in post-stroke patients," (Wu et al., 2002). According to Rabinstein and Shulman (2003), "Acupuncture is a therapy that involves stimulation of defined anatomic locations on the skin by a variety of techniques, the most common being stimulation with metallic needles that are manipulated either manually or that serve as electrodes conducting electrical currents". There is a range of possible acupuncture mechanisms that may contribute to the health benefits experienced by stroke patients (Park et al. 2006). For example, acupuncture may stimulate the release of neurotransmitters (Han & Terenius, 1982) and have an effect on the deep structure of the brain (Wu et al. 2002). Lo et al. (2005) established acupuncture, when applied for at least 10 minutes, led to long-lasting changes in cortical excitability and plasticity even after the needle stimulus was removed. With respect to stroke rehabilitation, the benefit of acupuncture has been evaluated most frequently for pain relief and recovery from hemiparesis.

24 RCTs for acupuncture were identified.

13 RCTs compared acupuncture to conventional care or sham (Wang et al. 2020; Chen et al. 2016; Hou et al. 2014; Bai et al. 2013; Gao et al. 2013; Zhuangl et al. 2012; Wayne et al. 2005; Alexander et al. 2004; Sze et al. 2002; Kjendhal et al. 1997; Hu et al. 2993; Naeser et al. 1992). Seven RCTs compared one acupuncture technique to another (Wei et al. 2019; Cui et al. 2014; Ni et al. 2013; Zhang et al. 2013; Fragoso & Ferreira, 2012; Zhao et al. 2009; Gosman-Hedstom et al. 1998). One RCT compared acupuncture in combination with CIMT to acupuncture alone (Song et al. 2016). One RCT compared acupuncture with TENS to acupuncture alone

(Hopwood et al. 2008). Two RCTs examined acupuncture combined with rTMS (Kim et al. 2020; Zhao et al. 2018).

The methodological details and results of all 19 RCTs evaluating acupuncture for upper extremity motor rehabilitation are presented in Table 39.

Table 39. Summary of RCTS with Examining Acupuncture for Upper Extremity Motor Rehabilitation

Rehabilitation					
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)			
Acupuncture compared to conventional therapy or sham					
Wang et al. (2020) RCT (8) Nstart=139 Nend=130 TPS=Subacute Chen et al. (2016) RCT (8) Nstart=250	E: Acupuncture C: Conventional rehabilitation Duration: 6x/wk, 4wks (both rehab (45min) and acupuncture) E: Acupuncture C: Conventional therapy Duration: 45min/d, 6d/wk for 3wk	Fugl-Meyer Upper Extremity: (+exp) Upper limb: (-) Lower Limb: (+exp) Barthel Index: (-) National Institute of Health Stroke Scale (+exp) Fugl-Meyer Assessment (+exp)			
NEnd=250 TPS=Chronic Liu et al. (2016)	E: Manual acupuncture + standard	National Institute of Health Stroke Scale (-)			
RCT (6) N _{Start} =38 N _{End} =31 TPS=Chronic	care C: Standard care Duration: Not Specified	Fugl-Meyer Assessment (-) Functional Independence Measure (-) Barthel Index (-) Modified Rankin Scale (-)			
Hou et al. (2014) RCT (4) Nstart= 552 Nend= 488 TPS= Acute Multi-Site	E: Acupuncture C: Conventional therapy (with piracetam) Duration: 1x/d, 3wks \~40min	 Modified Ashworth Scale: (+exp) Shoulder Abduction: (+exp) Pronation of Forearm: (+exp) Elbow Flexion: (+exp) Wrist Flexion: (+exp) Finger Flexion: (+exp) Neurological Deficit Grades (1-5): (+exp) 			
Bai et al. (2013) RCT (9) Nstart=120 NEnd=120 TPS=NR	E1: Acupuncture E2: Physical therapy E3: Acupuncture + physical therapy Duration: Not Specified	E1 vs E2 Fugl-Meyer Assessment (-) Modified Barthel Index (-) E1 vs E3 Fugl-Meyer Assessment (-) Modified Barthel Index (-) E2 vs E3 Fugl-Meyer Assessment (-) Modified Barthel Index (-)			
Gao et al. (2013) RCT (6) N _{start} = 106 N _{end} = 106 TPS=Acute	E1: Contralateral acupuncture E2: Ipsilateral acupuncture C: Conventional therapy (no acupuncture) Duration: 45min/d, 30d	E1 Vs C Neurological Deficit Score: (+exp1) Modified Barthel Index: (+exp1) Fugle-Meyers Assessment Upper Extremity: (+exp1) E2 Vs C Neurological Deficit Score: (+exp2) Modified Barthel Index: (+exp2) Fugle-Meyers Assessment Upper Extremity: (+exp2) E1 Vs E2 Neurological Deficit Score: (+exp1) Modified Barthel Index: (+exp1) Fugle-Meyers Assessment Upper Extremity: (+exp1)			

Zhuangl et al. (2012) RCT (7) N _{start} =295 N _{end} =274 TPS=Chronic	E1: Acupuncture E2: Physiotherapy E3: Acupuncture + physiotherapy Duration: 1hr/d, 6d/wk for 4wk	Fugl-Meyer Assessment (-) Barthel Index (-) Neurologic Defect Scale (-)
Wayne et al. (2005) RCT (9) Nstart=33 Nend=33 TPS=Chronic	E: Acupuncture C: Sham Duration: 45min/d, 2d/wk for 10wk	 Fugl-Meyer Assessment (-) Modified Ashworth scores (-) Arm range of motion (-) Barthel Index (-)
Alexander et al. (2004) RCT (6) Nstart=32 Nend=28 TPS=Acute	E: Acupuncture + Standard Rehabilitation C: Standard Rehabilitation Duration: 30min/d, 2d/wk for 10 wk	Fugl-Meyer Assessment (-) Functional Independence Measure (-)
Sze et al. (2002) RCT (7) N _{start} =106 N _{end} =106 TPS=Acute	E: Acupuncture + Standard Therapy C: Standard Therapy Duration: 45min/d, 2d/wk for 10wk	Fugl-Meyer Assessment (-) Barthel Index (-) Functional Independence Measure (-) National Institutes of Health Stroke Scale (-)
Kjendhal et al. (1997) RCT (6) N _{start} =45 N _{end} =41 TPS=Subacute	E: Acupuncture C: Standard Therapy Duration: 30min/d, 3-4d/wk for 6wk	 Motor Assessment Scale (+exp) Sunnaas Index (+exp)
Hu et al. (1993) RCT (4) N _{start} =30 N _{end} =NR TPS=Acute	E: Acupuncture C: Supportive Therapy + Conventional Rehabilitation Duration: Not Specified	Scaninavian stroke study Neurological score (+exp) Barthel Index (-)
Naeser et al. (1992) RCT (6) N _{start} =16 N _{end} =16 TPS=Subacute	E: Acupuncture C: Sham Acupuncture Duration: 1hr/d, 5d/wk for 4wk	Boston Motor Inventory range of motion (+exp)
	Acupuncture vs acu	ipuncture
Wei et al. (2019) RCT (4) N _{start} =40 N _{end} =40 TPS=Subacute	E: Acupuncture + neuromuscular joint facilitation C: Acupuncture Duration: 30min, 1x/d, 6x/wk	
Cui et al. (2014) RCT (6) Nstart=60 NEnd=60 TPS=NR	E: Yin Yang manipulation C: Conventional needling manipulation Duration: Not Specified	Elbow spasm (+exp) Clinical Spasticity Index (+exp)
Ni et al. (2013) RCT (7) N _{Start} =165 N _{End} =165 TPS= NR	E: Standard Acupuncture with Shixuan & Xiaohai acupoints C: Standard Acupuncture only Duration: <i>Not Specified</i>	 Finger grip strength (+exp) Fugl-Meyer Assessment (+exp)
Zhang et al. (2013) RCT (6) N _{start} =36 N _{end} =36 TPS=Subacute	E: Chinese acupuncture C: Western acupuncture Duration: 6d/wk for 6wks	Modified Ashworth Scale: (+exp) Clinical Spasticity Index: (+exp)

Fragoso & Ferreira (2012) RCT (6) N _{start} =32 N _{end} =32 TPS=Chronic Zhao et al. (2009) RCT (6) N _{start} =131 N _{end} =120 TPS=Chronic	E1: Acupuncture at Tianquan (PC2) E2: Acupuncture at Quchi (LI11) Duration: 20min/d, 5d/wk for 4wk E: Experimental acupuncture C: Traditional acupuncture Duration: 20min/d 5d/wk for 4wks	Maximal Isometric Voluntary Contraction during elbow flexion (-) Modified Ashworth Scale: (+exp) Fugl Meyer Assessment Upper Extremity: (+exp) Barthel Index: (+exp)
Gosman-Hedstom et al. (1998) RCT (7) N _{start} =104 N _{end} =98	E1: Superficial acupuncture E2: Deep acupuncture C: No acupuncture Duration: 1hr/d, 2d/wk for 10 wk	E1 vs E2 vs C Scaninavian stroke study Neurological score (-) Barthel Index (-) Sunnaas Index (-)
TPS=Acute	Acupuncture combine	d with CIMT
Song et al. (2016) RCT (5) N _{Start} =30 N _{End} =30 TPS=Acute	E: Scalp cluster acupuncture + constraint-induced movement therapy C: Body acupuncture + traditional rehabilitation Duration: 6hr/d, (needles twisted 2-3x), 6d/wk for 2wk	Fugl-Meyer Assessment (-)
	Acupuncture combined	with TENS
Hopwood et al. (2008) RCT (7) N _{start} =105 N _{end} =105 TPS=Acute	E: Acupuncture with TENS C: Acupuncture with sham TENS Duration: 1hr/d, 3d/wk for 4wk	Barthel Index (-) Motricity Index (-)
	Accupuncture versu	s rTMS
Kim et al. (2020) RCT (6) Nstart= 60 Nend= 42 TPS= Acute	E1: Scalp acupuncture (SA) E2: Repetitive transcranial magnetic stimulation (rTMS) E3: SA and electromagnetic convergence stimulation (SAEM-CS) C: Conventional therapy Duration:5x plus 5x of experimental conditions for 3wks	E1 Vs C Fugle-Meyers Assessment: (-) National Institute Health Stroke Scale: (-) Modified Barthel Index: (-) Functional Independence Measure: (-) Nine Hole Peg Test: (-) Modified Rankin Scale: (-) Modified Ashworth Scale: Elbow: (-) Ankle: (-) Grip Test Dominant hand: (-) Non-dominant hand: (-) Fugle-Meyers Assessment: (-) Modified Barthel Index: (+exp2) Functional Independence Measure: (-) Modified Rankin Scale: (-) Modified Rankin Scale: (-) Modified Ashworth Scale: Elbow: (-) Modified Ashworth Scale: Fugle-Meyers Assessment: (-) Modified Ashworth Scale: Functional Independence Measure: (-) Modified Rankin Scale: (-) Modified Rankin Scale: (-) Modified Ashworth Scale: Fugle-Meyers Assessment: (-) Non-dominant hand: (-) Non-dominant hand: (-) Fugle-Meyers Assessment: (-)

	I	
		 Lower extremity: (-) National Institute Health Stroke Scale: (-) Modified Barthel Index: (-) Functional Independence Measure: (-) Nine Hole Peg Test: (-) Modified Rankin Scale: (-) Modified Ashworth Scale: Elbow: (-) Ankle: (-) Grip Test Dominant hand: (-) E1 Vs E2 Vs E3 Fugle-Meyers Assessment: (+exp2) National Institute Health Stroke Scale: (-) Modified Barthel Index: (-) Functional Independence Measure: (-) Nine Hole Peg Test: (-) Modified Rankin Scale: (-) Modified Ashworth Scale: Elbow: (-) Ankle: (-) Grip Test Dominant hand: (-) Non-dominant hand: (-)
Zhao et al. (2018)	E: Low frequency rTMS +	Fugl Meyer Upper Extremity: (+exp)
RCT (7)	acupuncture	Modified Barthel Index: (+exp)
N _{start} =28	C: Acupuncture	(-1)
N _{end} =17	Duration: 1x/d for 2 wks	
TPS=Subacute		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Acupuncture

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	Acupuncture may not have a difference in efficacy when compared to conventional therapy or sham for improving motor function.	11	Kim et al. 2020; Wang et al. 2020; Chen et al. 2016; Liu et al. 2016; Han et al. 2015; Gao et al. 2013; Bai et al. 2013; Zhuangl et al. 2012; Wayne et al. 2005; Alexander et al. 2004; Sze et al. 2002	
1b	Standard acupuncture with Shixuan & Xiaohai acupoints and experimental acupuncture may produce greater improvements in motor function than standard or traditional acupuncture.	1	Ni et al. 2013	
2	Experimental acupuncture may produce greater improvements in motor function than standard or traditional acupuncture.	1	Zhao et al. 2009	
2	Acupuncture with neuromuscular joint facilitation may produce greater improvements in motor function than acupuncture.	1	Wei et al. 2019	

⁺exp indicates a statistically significant between groups difference at α =0.05 in favour of the experimental group +exp₂ indicates a statistically significant between groups difference at α =0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=}0.05$

2	Scalp cluster acupuncture combined with CIMT may not have a difference in efficacy when compared to body acupuncture with traditional rehabilitation for improving motor function.	1	Song et al. 2016
1a	There is conflicting evidence about the effect of Acupuncture combined with rTMS to improve motor function when compared to acupuncture alone .	2	Kim et al. 2020; Zhao et al. 2018

DEXTERITY				
LoE	Conclusion Statement	RCTs	References	
1b	Acupuncture may not have a difference in efficacy when compared to conventional therapy or sham for improvements on dexterity.	1	Kim et al. 2020	
1b	Acupuncture combined with rTMS may not have a difference in efficacy when compared to acupuncture alone for improving performance of dexterity.	1	Kim et al. 2020	

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Acupuncture may not have a difference in efficacy when compared to conventional therapy or sham for improvements in spasticity.	4	Kim et al. 2020; Cui et al. 2014Hou et al. 2013; Wayne et al. 2005	
2	Experimental acupuncture may produce greater improvements in spasticity than traditional acupuncture.	1	Zhao et al. 2009	
1b	Acupuncture combined with rTMS may not have a difference in efficacy when compared to acupuncture alone or rTMS alone for improving spasticity.	1	Kim et al. 2020	
1b	Chinese acupuncture may produce greater improvements in spasticity than Western acupuncture.	1	Zhang et al. 2013	

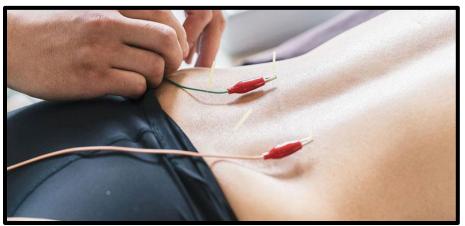
RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
2	Acupuncture with neuromuscular joint facilitation may produce greater improvements in range of motion than acupuncture.	1	Wei et al. 2019	

RANGE OF MOTION				
LoE	Conclusion Statement	RCTs	References	
1a	Acupuncture may produce greater improvements in range of motion than conventional therapy or sham.	3	Hou et al. 2014; Wayne et al. 2009; Naeser et al. 1992	

STROKE SEVERITY				
LoE	Conclusion Statement	RCTs	References	
1a	Acupuncture may not have a difference in efficacy when compared to conventional therapy or sham for improvements on measures of stroke severity.	7	Kim et al. 2020; Liu et al. 2016; Hou et al. 2014; Gao et al. 2013; Zhuangl et al. 2012; Sze et al. 2002; Hu et al. 1993	
1b	Superficial acupuncture may not have a difference in efficacy when compared to deep acupuncture for improvements on measures of stroke severity.	1	Gosman-Hedstrom et al. 1998	
1b	Acupuncture combined with rTMS may not have a difference in efficacy when compared to acupuncture alone or rTMS alone for improving on measures of stroke severity.	1	Kim et al. 2020	

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Acupuncture may not have a difference in efficacy when compared to conventional therapy or sham for improving performance of activities of daily living.	11	Kim et al. 2020; Wang et al. 2020; Liu et al. 2016; Bai et al. 2013; Gao et al. 2013; Thuangl et al. 2012; Wayne et al. 2005; Alexander et al. 2004; Sze et al. 2002; Kjendhal et al. 1997; Hu et al.1993
1b	Acupuncture combined with TENS may not have a difference in efficacy when compared to acupuncture with sham stimulation for improving performance of activities of daily living.	1	Hopwood et al. 2008
1b	Superficial acupuncture may not have a difference in efficacy when compared to deep acupuncture for improving performance of activities of daily living.	1	Gosman-Hedstom et al. 1998
2	Experimental acupuncture may produce greater improvements in performance of activities of daily living than traditional acupuncture.	1	Zhao et al. 2009
2	Acupuncture with neuromuscular joint facilitation may not have a difference in efficacy when compared to acupuncture for improving performance of activities of daily living.	1	Wei et al. 2019
1a	There is conflicting evidence about the effect of Acupuncture combined with rTMS to improve performance of activities of daily living when compared to acupuncture alone.	2	Kim et al. 2020; Zhao et al. 2018

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1b	Scalp acupuncture may not have a difference in efficacy when compared to conventional therapy for improving muscle strength.	1	Kim et al. 2020
1a	Standard acupuncture with Shixuan & Xiaohai acupoints and acupuncture at Tianquan PC2 may	2	Ni et al. 2013; Fragoso and Ferreira, 2012


	produce greater improvements in muscle strength than standard acupuncture only and acupuncture at Quchi LI11.		
1b	Acupuncture combined with TENS may not have a difference in efficacy when compared to acupuncture with sham stimulation for improving muscle strength.	1	Hopwood et al. 2008
1b	Acupuncture combined with rTMS may not have a difference in efficacy when compared to acupuncture alone or rTMS alone for improving muscle strength	1	Kim et al. 2020

Key points

Acupuncture alone compared to conventional therapy may not be beneficial for upper limb rehabilitation following stroke.

Acupuncture combined with conventional or other therapy approaches may not be beneficial for upper limb function. Some forms of acupuncture may be more beneficial than others.

Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation

Adopted from: https://www.promotionhealthcare.com/electroacupuncture-treatment-pain-injuries

Electroacupuncture is a variant of acupuncture techniques practiced in traditional Chinese medicine, the difference being that a minute electrical current of similar intensity to that of a bioelectric current produced endogenously in the body is applied to the needles used (Wang et al. 2014). The needle is often placed on meridian points throughout the body (Wang et al. 2014). Similarly, transcutaneous electrical acupoint stimulation (TEAS) stimulates meridian points believed to be associated with a medical condition with electrical impulses given through needles (Zhao et al. 2015). The two techniques have very similar mechanisms of action and their influence on afferent stimulation to the body (Zhao et al. 2015).

13 RCTs were found that evaluated electroacupuncture.

Seven RCTs compared electroacupuncture to conventional care or sham stimulation (Zhao et al. 2015; Au-Yeung et al. 2014; Wang et al. 2014; Yao et al. 2014; Hsing et al. 2012; Hsieh et al. 2007; Schaechter et al. 2007). Two RCTs compared electroacupunture against, or in combination with, moxibuston (Wen et al. 2014; Moon et al. 2003). One RCT compared electroacupuncture with massage to conventional care (Li et al. 2012) and one RCT compared electroacupuncture with strength training to conventional care (Mukherjee et al. 2007b). One RCT looked at electroacupuncture combined with neuronavigation-assisted aspiration compared to neuronavigation-assisted aspiration, electroacupuncture or conventional therapy (Zhang et al. 2017).

The methodological details and results of all 13 RCTs evaluating electroacupuncture and transcutaneous electrical acupoint stimulation for the upper extremity motor rehabilitation are presented in Table 40.

Table 40. RCTs Evaluating Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation Interventions for Upper Extremity Motor Rehabilitation

	Stimulation Interventions for Upper Extremity Motor Rehabilitation Authors (Year) Interventions Outcome Measures				
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Result (direction of effect)			
Zhao et al. (2015) RCT (9) N _{Start} =60 N _{End} =60 TPS=Chronic	E1: Transcutaneous electrical acupoint stimulation (TEAS) (100Hz) E2: Transcutaneous electrical acupoint stimulation (TEAS) (2Hz) C: Sham stimulation Duration: 0, 2, or 100Hz/d, 5d/wk for 4wk	E1 vs C Modified Ashworth Scale (+exp) Disability Assessment Scale (-) Global Assessment Scale (-) Barthel Index (-) E2 vs C Modified Ashworth Scale (+exp ₂) Disability Assessment Scale (-) Global Assessment Scale (-) Barthel Index (-) E1 v E2 Modified Ashworth Scale (+exp) Disability Assessment Scale (-) Global Assessment Scale (-) Global Assessment Scale (-) Barthel Index (-) Barthel Index (-)			
Au-Yeung et al. (2014) RCT (6) NStart=73 NEnd=60 TPS=Acute	E1: Electroacupoint stimulation E2: Sham stimulation C: Conventional therapy (control) Duration: 20Hz/d, 1h/d, 5d/wk for 4wk	E1 vs. C • Hand grip strength (+exp) • Index grip pinch (+exp) E2 vs C & E1 vs E2 • Hand grip strength (-) • Index grip pinch (-) • Action Research Arm Test (-)			
Wang et al. (2014) RCT (6) N _{Start} =20 N _{End} =15 TPS=Chronic	E: Electroacupuncture C: No stimulation with no needle manipulation Duration: 50Hz/d, 20min/d, 2d/wk for 6wk	Elbow joint muscle tone (+exp) Wrist joint muscle tone (-)			
Yao et al. (2014) RCT (5) N _{Start} =68 N _{End} =65 TPS=Chronic	E: Relaxed needling + electroacupuncture C: Ordinary needling Duration: 5Hz, 30min/d, 3d/wk for 8wk	Fugl-Meyer Assessment (+exp)			
Hsing et al. (2012) RCT (7) Nstart=62 Nend=62 TPS=Subacute	E: Scalp electro-acupuncture C: Sham acupuncture Duration: 2 to 100Hz, 30min/d, 2d/wk for 5wk	Barthel Index (-) Rankin Scale (-)			
Hsieh et al. (2007) RCT (8) Nstart=63 Nend=63 TPS=Subacute	E: Electroacupuncture C: No acupuncture Duration: 20min/d, 2d/wk for 4wk	Functional Independence Measure (-) Fugl-Meyer Assessment (+exp)			
Schaechter et al. (2007) RCT (5) Nstart= 8 Nend= 7 TPS= Chronic	E: Electroacupuncture C: Sham Duration: 2x/wk, 10wks	Modified Ashworth Scale, wrist (-) Range of Motion (-)			
	Electroacupuncture and moxibu				
Wen et al. (2014) RCT (7) Nstart=300 NEnd=276 TPS=Acute	E: Electroacupuncture + moxibustion C: Basic therapy Duration: 2 to 15Hz, 5-7d/wk for 4wk	Fugl-Meyer Assessment (-)			

Moon et al. (2003)	E1: Electroacupuncture	E1 vs E2/C
RCT (5)	E2: Moxibustion	Modified Ashworth scale (+exp)
N _{start} =35	C: Routine acupuncture	Wodilled Ashworth scale (Fexp)
Nend=31	Duration: 50Hz, 30min/d, 3d/wk for	
TPS=Subacute	3wk	
11 3=Subacute	Electroacupuncture combined	with massage
1: at al. (2012)	-	
<u>Li et al</u> . (2012)	E: Electroacupuncture + massage	Fugl-Meyer Assessment (-) Madified Bankin Scale (1-2):
RCT (6)	C: Rehabilitation therapy	Modified Rankin Scale (+exp)
N _{start} =120	Duration: 25min/d, 5d/wk, 6wk	
N _{end} =120		
TPS=Acute	<u> </u>	
	Electroacupuncture combined with	
Mukherjee et al. (2007b)	E: Electroacupuncture + strength	Modified Ashworth Scale (+exp)
RCT (4)	training	
N _{start} =7	C: Strength training	
N _{end} =7	Duration: 2Hz, 40min/d, 2d/wk for 6wk	
TPS=Subacute		
	Electroacupuncture of acupoints ver	sus non-acupoints
Chau et al. (2009)	E: Electro-acupuncture on motor	Barthel's Index: (-)
RCT (4)	acupuncture points	Fugl Meyes Upper Extremity: (-)
N _{start} = 23	C: Electro-acupuncture on non-motor	Motricity Index: (-)
N _{end} = 19	acupuncture points	Grip Power: (-)
TPS= Acute	Duration: 30min, 3x/wk, 8wks	onprower. ()
	Neuronavigation-assisted aspiration +	electroacupuncture
Zhang et al. (2017)	E1: Neuronavigation-assisted	E1 vs E2
RCT (7)	aspiration + electroacupuncture	Fugl-Meyer Assessment (+exp)
Nstart=240	E2: Neuronavigation-assisted	Modified Ashworth Scale (+exp)
N _{End} =233	aspiration	Barthel Index (+exp)
TPS=Acute	E3: Electroacupuncture	E1 vs E3
11 C=7 touto	C: Conventional therapy	• Fugl-Meyer Assessment (+exp)
	Duration: 30min (2x per day) for 8wk	Modified Ashworth Scale (+exp)
	Duration. John (ZX per day) for owk	Barthel Index (+exp)
		E1 vs E4
		Fugl-Meyer Assessment (+exp) Medified Ashwerth Seels (+exp)
		Modified Ashworth Scale (+exp) Says 54
		E3 vs E4
		• Fugl-Meyer Assessment (+exp ₃)
		Modified Ashworth Scale (+exp ₃) Min minutes BCT readomized controlled trials TBS times

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

Conclusions about Electroacupuncture and Transcutaneous Electrical Acupoint Stimulation

MOTOR FUNCTION				
LoE	Conclusion Statement	RCTs	References	
1a	Electroacupuncture and transcutaneous electrical acupoint stimulation may produce greater improvements in motor function than conventional therapy or sham stimulation/ordinary needling.	4	Zhang et al. 2017; Au-Yeung et al. 2014; Yao et al. 2014; Hsieh et al. 2007	
1b	Electroacupuncture combined with moxibuston may not have a difference in efficacy when compared to conventional therapy for improving motor function.	1	Wen et al. 2014	

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at $\alpha \text{=} 0.05$ in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha\text{=}0.05$

4.	Electroacupuncture combined with massage may		Li et al. 2012
1b	not have a difference in efficacy when compared to	1	
	conventional therapy for improving motor function.		
	Electroacupuncture on motor acupoints may not		Chau et al. 2009
2	have a difference in efficacy when compared to	4	
	electroacupuncture on non-motor acupoints for	'	
	improving motor function.		
	Electroacupuncture combined with		Zhang et al. 2017
	neuronavigation-assisted aspiration may produce		
1b	greater improvements in motor function than	1	
10	neuronavigation-assisted aspiration,	'	
	electroacupuncture and conventional therapy on		
	their own.		

SPASTICITY				
LoE	Conclusion Statement	RCTs	References	
1a	Electroacupuncture and transcutaneous electrical acupoint stimulation may produce greater improvements in spasticity than conventional therapy or sham stimulation/ordinary needling.	5	Zhang et al. 2017; Zhao et al. 2015; Wang et al. 2014; Schaechter et al., 2007; Moon et al. 2003	
2	Electroacupuncture may produce greater improvements spasticity than moxibuston.	1	Moon et al. 2003	
2	Electroacupuncture combined with strength training may produce greater improvements spasticity than strength training alone.	1	Mukherjee et al. 2007	
1b	Electroacupuncture combined with neuronavigation-assisted aspiration may produce greater improvements in spasticity than neuronavigation-assisted aspiration, electroacupuncture and conventional therapy on their own.	1	Zhang et al. 2017	

STROKE SEVERITY			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of electroacupuncture and transcutaneous electrical acupoint stimulation to improve scores on measures of stroke severity when compared to conventional therapy or sham stimulation/ordinary needling.	2	Hsing et al. 2012; Li et al. 2012

	RANGE OF MOTION		
LoE	Conclusion Statement	RCTs	References

2	Electroacupuncture and transcutaneous electrical acupoint stimulation may not have a difference in efficacy when compared to conventional therapy or sham stimulation/ordinary needling for improving range of motion.	1	Schaechter et al., 2007
---	--	---	----------------------------

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Electroacupuncture and transcutaneous electrical acupoint stimulation may not have a difference in efficacy when compared to conventional therapy or sham stimulation/ordinary needling for improving performance of activities of daily living.	3	Zhao et al. 2015; Hsing et al. 2012; Li et al., 2012; Hsieh et al. 2007;
2	Electroacupuncture on motor acupoints may not have a difference in efficacy when compared to electroacupuncture on non-motor acupoints for improving perofmrance of activities of daily living.	1	Chau et al. 2009
1b	Electroacupuncture combined with neuronavigation-assisted aspiration may produce greater improvements in activities of daily living neuronavigation-assisted aspiration and electroacupuncture on their own.	1	Zhang et al. 2017

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
1a	Electroacupuncture and transcutaneous electrical acupoint stimulation may produce greater improvements in muscle strength than conventional therapy or sham stimulation/ordinary needling.	1	Au-Yeung et al. 2014
2	Electroacupuncture on motor acupoints may not have a difference in efficacy when compared to electroacupuncture on non-motor acupoints for improving muscle strength.	1	Chau et al. 2009

Key points

Electroacupuncture may be beneficial for some aspects of rehabilitation in the upper limb following stroke.

Meridian Acupressure and Massage Therapy

Adopted from: http://physiotherapeutic.ca/servi-physio/111-massage-therapy

Meridian acupressure is a form of treatment whereby finger pressure is applied to meridian points on the body (Yang et al. 2017). There are two types of meridian points: yin and yang (Yang et al. 2017). Yin meridians run from the feet to the torso, and from the torso to the fingertips on the inside of the arms (Cui et al. 2014). On the other hand, yang meridians run from the fingers to the face and from the face to the feet (Cui et al. 2014). Acupressure increases blood (qi) flow to the areas it is applied in (Di et al. 2017).

Massage is the practice of applying structured pressure, tension, motion or vibration — manually or with mechanical aids — to the soft tissues of the body, including: muscles, connective tissue, tendons, ligaments, joints and lymphatic vessels, to achieve a beneficial response (Holland & Pokorny, 2001). As a form of therapy, massage can be applied to parts of the body or successively to the whole body, to heal injury, relieve psychological stress, manage pain, and improve circulation (College of Massage Therapists of Ontario, 2018). The benefits of massage therapy are suggested to be increased blood flow, relief of muscle spasms and release of β-endorphins (Wei et al. 2017). One of the more common forms of massage therapy is the traditional Chinese massage therapy also known as Tui Na (Yang et al. 2017).

Seven RCTs were found evalutating meridian acupressure and massage against conventional care (Wang et al. 2019; Di et al. 2017; Yang et al. 2017a; Yang et al. 2017b; Thanakiatpinyo et al. 2014; Yue et al. 2013; Kang et al. 2009).

The methodological details and results of all seven RCTs evaluating meridian acupressure and massage therapy for upper extremity motor rehabilitation are presented in Table 41.

Table 41. RCTs Evaluating Meridian Acupressure and Massage Therapy Interventions for Upper Extremity Motor Rehabilitation

Upper Extremity Motor Rehabilitation				
Authors (Year) Study Design (PEDro Score) Sample Size _{start} Sample Size _{end} Time post stroke category	Interventions Duration: Session length, frequency per week for total number of weeks	Outcome Measures Result (direction of effect)		
Wang et al. (2019) RCT (7) N _{start} =444 N _{end} =397 TPS=Mixed	E: Tui Na massage C: Conventional rehabilitation Duration: rehab 5x/wk, 4wks 230hrs massage 40min 5x/wk 4wks	Modified Ashworth Scale (1-3mo): Elbow flexion: (-) Wrist flexion: (+exp) Finger flexion: (+exp) Fugl Meyer Assessment (1-3mo): (+exp) Modified Barthel Index (1-3mo): (-) Modified Ashworth Scale (4-6mo): Elbow flexion: (+exp) Wrist flexion: (-) Finger flexion: (-) Fugl Meyer Assessment (4-6mo): (-) Modified Barthel Index (4-6mo): (-) Modified Ashworth Scale (7-12mo): Elbow flexion: (-) Wrist flexion: (-) Finger flexion: (-) Fugl Meyer Assessment (7-12mo): (-) Upper: (-) Modified Barthel Index (7-12mo): (-)		
Di et al. (2017) RCT (5) N _{Start} =150 N _{End} =150 TPS=Subacute	E: Tui Na Therapy C: Conventional therapy Duration: 30min/d, 5d/wk for 4wk	Modified Ashworth Scale (+exp)		
Yang et al. (2017a) RCT (8) N _{Start} =90 N _{End} =74 TPS=Subacute	E: Tui Na C: Placebo Tui Na Duration: 20-25min/d, 5d/wk for 4wk	Modified Ashworth Scale (+exp) Fugl-Meyer Assessment (-) Modified Barthel Index (-)		
Yang et al. (2017b) RCT (8) Nstart=90 NEnd=79 TPS=Subacute	E: Tui Na C: Placebo Therapy Duration: 20-25min/d, 5d/wk for 4wk	Fugl-Meyer Assessment (-) Modified Barthel Index (-)		
Thanakiatpinyo et al. (2014) RCT (7) Nstart=50 NEnd=45 TPS=Chronic	E: Thai massage C: Physical therapy Duration: 30min/d, 2d/wk for 6wk	Modified Ashworth Scale (-) Barthel Index (-)		
Yue et al. (2013) RCT (6) N _{start} =78 N _{end} =72 TPS=Chronic	E: Acupressure C: Routine care Duration: 45min/d, 5d/wk, 4wk	Barthel Index (+exp) Fugl-Meyer Assessment (+exp)		
Kang et al. (2009) RCT (5) N _{start} =56 N _{end} =56 TPS=Chronic	E: Meridian acupressure C: Standard care Duration: 10min/d, 7d/wk for 2wk	Grip power (+exp) Passive range of motion (+exp)		

Abbreviations and table notes: C=control group; D=days; E=experimental group; H=hours; Min=minutes; RCT=randomized controlled trial; TPS=time post stroke category (Acute: less than 30 days, Subacute: more than 1 month but less than 6 months, Chronic: over 6 months); Wk=weeks.

⁺exp indicates a statistically significant between groups difference at α=0.05 in favour of the experimental group

⁺exp₂ indicates a statistically significant between groups difference at α=0.05 in favour of the second experimental group

⁺con indicates a statistically significant between groups difference at α =0.05 in favour of the control group

⁻ indicates no statistically significant between groups differences at $\alpha \text{=} 0.05$

Conclusions about Meridian Acupressure and Massage Therapy

MOTOR FUNCTION			
LoE	Conclusion Statement	RCTs	References
1a	Meridian acupressure and massage therapy may not have a difference in efficacy when compared to conventional therapy or placebo massage therapy for improving motor function.	4	Wang et al., 2019; Yang et al. 2017; Yang et al. 2017; Yue et al. 2013;

MUSCLE STRENGTH			
LoE	Conclusion Statement	RCTs	References
2	Meridian acupressure and massage therapy may produce greater improvements in muscle strength than	1	Kang et al. 2009
	conventional therapy.		

RANGE OF MOTION			
LoE	Conclusion Statement	RCTs	References
2	Meridian acupressure and massage therapy may produce greater improvements in range of motion than conventional therapy.	1	Kang et al. 2009

ACTIVITIES OF DAILY LIVING			
LoE	Conclusion Statement	RCTs	References
1a	Meridian acupressure and massage therapy may not have a difference in efficacy when compared to conventional therapy or placebo massage therapy for improving performance of activities of daily living.	5	Wang et al. 2019; Yang et al. 2017; Yang et al. 2017; Thanakiatpinyo et al. 2014; Yue et al. 2013

SPASTICITY			
LoE	Conclusion Statement	RCTs	References
1a	There is conflicting evidence about the effect of meridian acupressure and massage therapy to improve spasticity when compared to conventional therapy or placebo massage	4	Wang et al. 2019 ; Di et al. 2017; Yang et al. 2017; Thanakiatpinyo et al. 2014

Key points

Meridian acupressure and massage may not improve motor function or activities of daily living post-stroke. The literature is mixed regarding its effects on spasticity.

References

Abdollahi, F., Corrigan, M., Lazzaro, E. D., Kenyon, R. V., & Patton, J. L. (2018). Erroraugmented bimanual therapy for stroke survivors. NeuroRehabilitation, 43(1), 51-61.

Abdullah, H. A., Tarry, C., Lambert, C., Barreca, S., & Allen, B. O. (2011). Results of clinicians using a therapeutic robotic system in an inpatient stroke rehabilitation unit. Journal of neuroengineering and rehabilitation, 8(1), 50.

Abdullahi, A. (2016). Upper limb self-efficacy test (UPSET): a measure of confidence in the use of the upper limb after stroke. Advances of Science for Medicine, 1(2), 10-18.

Abo, M., Kakuda, W., Momosaki, R., Harashima, H., Kojima, M., Watanabe, S., ... & Sasanuma, J. (2014). Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY Study. International Journal of Stroke, 9(5), 607-612.

About Massage Therapy. (2017, May 10). Retrieved April 8, 2019, from https://www.cmto.com/about-the-profession/about-massage-therapy/

Abraha, B., Chaves, A. R., Kelly, L. P., Wallack, E. M., Wadden, K. P., McCarthy, J., & Ploughman, M. (2018). A Bout of High Intensity Interval Training Lengthened Nerve Conduction Latency to the Non-exercised Affected Limb in Chronic Stroke. Frontiers in physiology, 9, 827.

Achacheluee, S. T., Rahnama, L., Karimi, N., Abdollahi, I., Arslan, S. A., & Jaberzadeh, S. (2018). The effect of unihemispheric concurrent dual-site transcranial direct current stimulation of primary motor and dorsolateral prefrontal cortices on motor function in patients with sub-acute stroke. Frontiers in human neuroscience, 12, 441.

Ackerley, S. J., Byblow, W. D., Barber, P. A., MacDonald, H., McIntyre-Robinson, A., & Stinear, C. M. (2016). Primed physical therapy enhances recovery of upper limb function in chronic stroke patients. Neurorehabilitation and neural repair, 30(4), 339-348.

Ackerley, S. J., Stinear, C. M., Barber, P. A., & Byblow, W. D. (2010). Combining theta burst stimulation with training after subcortical stroke. Stroke, 41(7), 1568-1572.

Ackerley, S. J., Stinear, C. M., Barber, P. A., & Byblow, W. D. (2014). Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clinical Neurophysiology, 125(7), 1451-1458.

Ada, L., Dorsch, S., & Canning, C. G. (2006). Strengthening interventions increase strength and improve activity after stroke: a systematic review. Australian Journal of Physiotherapy, 52(4), 241-248.

Adie, K., Schofield, C., Berrow, M., Wingham, J., Humfryes, J., Pritchard, C., ... & Allison, R. (2017). Does the use of Nintendo Wii SportsTM improve arm function? Trial of WiiTM in Stroke: A randomized controlled trial and economics analysis. Clinical rehabilitation, 31(2), 173-185.

Agni, P. N., & Kulkarni, V. (2017). Effect of Strength Training, Functional Task Related Training and Combined Strength and Functional Task Related Training On Upper Extremity In Post Stroke Patients. International Journal of Physiotherapy, 4(3), 184-190.

- Ahmad, F., Al-Abdulwahab, S., Al-Jarallah, N., Al-Baradie, R., Al-Qawi, M. Z., Kashoo, F. Z., & Sachdeva, H. S. (2014). Relative & Cumulative efficacy of Auditory & Visual Imagery on Upper Limb Functional Activity among Chronic Stroke Patients. NATIONAL EDITORIAL ADVISORY BOARD, 8(4), 4264.
- Ahn, J. Y., Kim, H., & Park, C. B. (2019). Effects of whole-body vibration on upper extremity function and grip strength in patients with subacute stroke: a randomised single-blind controlled trial. Occupational therapy international, 2019.
- Ahn, S. (2016). Association between daily activities, process skills, and motor skills in community-dwelling patients after left hemiparetic stroke. Journal of physical therapy science, 28(6), 1829-1831.
- Alberts, J. L., Butler, A. J., & Wolf, S. L. (2004). The effects of constraint-induced therapy on precision grip: a preliminary study. *Neurorehabilitation and Neural Repair*, *18*(4), 250-258.
- Alexander, D. N., Cen, S., Sullivan, K. J., Bhavnani, G., Ma, X., Azen, S. P., & ASAP Study Group. (2004). Effects of acupuncture treatment on poststroke motor recovery and physical function: a pilot study. Neurorehabilitation and neural repair, 18(4), 259-267.
- Alisar, D. C., Ozen, S., & Sozay, S. (2020). Effects of bihemispheric transcranial direct current stimulation on upper extremity function in stroke patients: a randomized double-blind sham-controlled study. Journal of Stroke and Cerebrovascular Diseases, 29(1), 104454.
- Allen K and Goodman C (2014). Using Electrical Stimulation: A guideline for Allied Health Professionals.
- Allgöwer, K., & Hermsdörfer, J. (2017). Fine motor skills predict performance in the Jebsen Taylor Hand Function Test after stroke. Clinical Neurophysiology, 128(10), 1858-1871.
- Allman, C., Amadi, U., Winkler, A. M., Wilkins, L., Filippini, N., Kischka, U., ... & Johansen-Berg, H. (2016). Ipsilesional anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. Science translational medicine, 8(330), 330re1-330re1.
- Almhdawi, K. A., Mathiowetz, V. G., White, M., & delMas, R. C. (2016). Efficacy of Occupational Therapy Task oriented Approach in Upper Extremity Post stroke Rehabilitation. Occupational therapy international, 23(4), 444-456.
- Alon, G. (2009). Defining and measuring residual deficits of the upper extremity following stroke: a new perspective. Topics in stroke rehabilitation, 16(3), 167-176.
- Alon, G., Levitt, A. F., & McCarthy, P. A. (2007). Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: a pilot study. Neurorehabilitation and neural repair, 21(3), 207-215.
- Altenmüller, E., Marco-Pallares, J., Münte, T. F., & Schneider, S. (2009). Neural reorganization underlies improvement in stroke-induced motor dysfunction by music-supported therapy. Annals of the New York Academy of Sciences, 1169(1), 395-405.
- Altschuler, E. L., Wisdom, S. B., Stone, L., Foster, C., Galasko, D., Llewellyn, D. M. E., & Ramachandran, V. S. (1999). Rehabilitation of hemiparesis after stroke with a mirror. The Lancet, 353(9169), 2035-2036.

- Amasyali, S. Y., & Yaliman, A. (2016). Comparison of the effects of mirror therapy and electromyography-triggered neuromuscular stimulation on hand functions in stroke patients: a pilot study. International Journal of Rehabilitation Research, 39(4), 302-307.
- Amatya, B., Khan, F., Windle, I., Lowe, M., & Galea, M. P. (2020). Evaluation of a Technology-Assisted Enriched Environmental Activities Programme for Upper Limb Function: A Randomized Controlled Trial. Journal of Rehabilitation Medicine, 52(1), 1-11.
- Andrade, S. M., Batista, L. M., Nogueira, L. L., Oliveira, E. A. D., de Carvalho, A. G., Lima, S. S., ... & Fernández-Calvo, B. (2017). Constraint-induced movement therapy combined with transcranial direct current stimulation over premotor cortex improves motor function in severe stroke: a pilot randomized controlled trial. Rehabilitation research and practice, 2017.
- Ang, K. K., Chua, K. S. G., Phua, K. S., Wang, C., Chin, Z. Y., Kuah, C. W. K., ... & Guan, C. (2015). A randomized controlled trial of EEG-based motor imagery brain-computer interface robotic rehabilitation for stroke. Clinical EEG and neuroscience, 46(4), 310-320.
- Ang, K. K., Guan, C., Phua, K. S., Wang, C., Zhao, L., Teo, W. P., ... & Chew, E. (2015). Facilitating effects of transcranial direct current stimulation on motor imagery brain-computer interface with robotic feedback for stroke rehabilitation. Archives of physical medicine and rehabilitation, 96(3), S79-S87.
- Annino, G., Alashram, A. R., Alghwiri, A. A., Romagnoli, C., Messina, G., Tancredi, V., ... & Mercuri, N. B. (2019). Effect of segmental muscle vibration on upper extremity functional ability poststroke: A randomized controlled trial. Medicine, 98(7).
- Antoniotti, P., Veronelli, L., Caronni, A., Monti, A., Aristidou, E., Montesano, M., & Corbo, M. (2019). No evidence of effectiveness of mirror therapy early after stroke: an assessor-blinded randomized controlled trial. Clinical rehabilitation, 33(5), 885-893.
- Appel, C., Perry, L., & Jones, F. (2015). Testing a protocol for a randomized controlled trial of therapeutic versus placebo shoulder strapping as an adjuvant intervention early after stroke. Occupational Therapy International, 22(2), 71-84.
- Aprile, I., Germanotta, M., Cruciani, A., Loreti, S., Pecchioli, C., Cecchi, F., ... & Speranza, G. (2020). Upper limb robotic rehabilitation after stroke: a multicenter, randomized clinical trial. Journal of Neurologic Physical Therapy, 44(1), 3-14.
- Arya, K. N., Pandian, S., & Puri, V. (2018). Mirror illusion for sensori-motor training in stroke: a randomized controlled trial. Journal of Stroke and Cerebrovascular Diseases, 27(11), 3236-3246.
- Arya, K. N., Pandian, S., Kumar, D., & Puri, V. (2015). Task-based mirror therapy augmenting motor recovery in poststroke hemiparesis: a randomized controlled trial. Journal of Stroke and Cerebrovascular Diseases, 24(8), 1738-1748.
- Ashford, S., Slade, M., Malaprade, F., & Turner-Stokes, L. (2008). Evaluation of functional outcome measures for the hemiparetic upper limb: a systematic review. Journal of rehabilitation medicine, 40(10), 787-795.

- Aşkın, A., Atar, E., Koçyiğit, H., & Tosun, A. (2018). Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. Somatosensory & motor research, 35(1), 25-32.
- Aşkın, A., Tosun, A., & Demirdal, Ü. S. (2017). Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial. Somatosensory & motor research, 34(2), 102-107.
- Au-Yeung, S. S., Wang, J., Chen, Y., & Chua, E. (2014). Transcranial direct current stimulation to primary motor area improves hand dexterity and selective attention in chronic stroke. American journal of physical medicine & rehabilitation, 93(12), 1057-1064.
- Awad, A., Shaker, H., Shendy, W., & Fahmy, M. (2015). Effect of shoulder girdle strengthening on trunk alignment in patients with stroke. Journal of physical therapy science, 27(7), 2195-2200.
- Bai, Y. L., Li, L., Hu, Y. S., Wu, Y., Xie, P. J., Wang, S. W., ... & Zhu, B. (2013). Prospective, randomized controlled trial of physiotherapy and acupuncture on motor function and daily activities in patients with ischemic stroke. The Journal of Alternative and Complementary Medicine, 19(8), 684-689.
- Bai, Z., Zhang, J., Zhang, Z., Shu, T., & Niu, W. (2019). Comparison between movement-based and task-based mirror therapies on improving upper limb functions in patients with stroke: A pilot randomized controlled trial. Frontiers in neurology, 10, 288.
- Bakheit, A. M. O., Pittock, S., Moore, A. P., Wurker, M., Otto, S., Erbguth, F., & Coxon, L. (2001). A randomized, double-blind, placebo-controlled study of the efficacy and safety of botulinum toxin type A in upper limb spasticity in patients with stroke. European Journal of Neurology, 8(6), 559-565.
- Baldry, P. (2005). The Integration of Acupuncture within Medicine in the UK-the British Medical Acupuncture Society—s 25Th Anniversary. *Acupuncture in Medicine*, 23(1), 2-12.
- Baldwin, C. R., Harry, A. J., Power, L. J., Pope, K. L., & Harding, K. E. (2018). Modified Constraint Induced Movement Therapy is a feasible and potentially useful addition to the Community Rehabilitation tool kit after stroke: A pilot randomised control trial. Australian occupational therapy journal, 65(6), 503-511.
- Ballester, B. R., Nirme, J., Camacho, I., Duarte, E., Rodríguez, S., Cuxart, A., ... & Verschure, P. F. (2017). Domiciliary VR-based therapy for functional recovery and cortical reorganization: randomized controlled trial in participants at the chronic stage post stroke. JMIR serious games, 5(3).
- Bang, D. H., Shin, W. S., & Choi, S. J. (2015). The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial. Clinical rehabilitation, 29(6), 561-569.
- Barker, R. N., Brauer, S. G., & Carson, R. G. (2008). Training of reaching in stroke survivors with severe and chronic upper limb paresis using a novel nonrobotic device: a randomized clinical trial. Stroke, 39(6), 1800-1807.

- Barker, R. N., Hayward, K. S., Carson, R. G., Lloyd, D., & Brauer, S. G. (2017). SMART Arm Training With Outcome-Triggered Electrical Stimulation in Subacute Stroke Survivors With Severe Arm Disability: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 31(12), 1005-1016.
- Barreca, S., Gowland, C., Stratford, P., Huijbregts, M., Griffiths, J., Torresin, W., ... & Masters, L. (2004). Development of the Chedoke Arm and Hand Activity Inventory: theoretical constructs, item generation, and selection. Topics in stroke rehabilitation, 11(4), 31-42.
- Barry, J. G., Ross, S. A., & Woehrle, J. (2012). Therapy incorporating a dynamic wrist-hand orthosis versus manual assistance in chronic stroke: A pilot study. Journal of Neurologic Physical Therapy, 36(1), 17-24.
- Bartolo, M., De Nunzio, A. M., Sebastiano, F., Spicciato, F., Tortola, P., Nilsson, J., & Pierelli, F. (2014). Arm weight support training improves functional motor outcome and movement smoothness after stroke. Functional neurology, 29(1), 15.
- Barzel, A., Ketels, G., Stark, A., Tetzlaff, B., Daubmann, A., Wegscheider, K., ... & Scherer, M. (2015). Home-based constraint-induced movement therapy for patients with upper limb dysfunction after stroke (HOMECIMT): a cluster-randomised, controlled trial. The Lancet Neurology, 14(9), 893-902.
- Basaran, A., Emre, U., Ikbal Karadavut, K., Balbaloglu, O., & Bulmus, N. (2012). Hand splinting for poststroke spasticity: a randomized controlled trial. Topics in stroke rehabilitation, 19(4), 329-337.
- Basmajian, J. V., Gowland, C. A., Finlayson, M. A., Hall, A. L., Swanson, L. R., Stratford, P. W., ... & Brandstater, M. E. (1987). Stroke treatment: comparison of integrated behavioral-physical therapy vs traditional physical therapy programs. Archives of Physical Medicine and Rehabilitation, 68(5 Pt 1), 267-272.
- Batool, S., Soomro, N., Amjad, F., & Fauz, R. (2015). To compare the effectiveness of constraint induced movement therapy versus motor relearning programme to improve motor function of hemiplegic upper extremity after stroke. *Pakistan journal of medical sciences*, *31*(5), 1167.
- Baygutalp, F., & ŞENEL, K. (2014). Effect of Neuromuscular Electrical Stimulation In Hemiplegic Upper Extremity Rehabilitation. Turkish Journal of Geriatrics/Türk Geriatri Dergisi, 17(1).
- Beaulieu, L. D., Blanchette, A. K., Mercier, C., Bernard-Larocque, V., & Milot, M. H. (2019). Efficacy, safety, and tolerability of bilateral transcranial direct current stimulation combined to a resistance training program in chronic stroke survivors: A double-blind, randomized, placebo-controlled pilot study. Restorative Neurology and Neuroscience, 37(4), 333-346.
- Beebe, J. A., & Lang, C. E. (2009). Active range of motion predicts upper extremity function 3 months after stroke. Stroke, 40(5), 1772-1779.
- Beebe, J. A., & Lang, C. E. (2009). Relationships and responsiveness of six upper extremity function tests during the first 6 months of recovery after stroke. Journal of neurologic physical therapy: JNPT, 33(2), 96.

- Bell, A., & Muller, M. (2013). Effects of kinesio tape to reduce hand edema in acute stroke. Topics in stroke rehabilitation, 20(3), 283-288.
- Bell, K. R., & Williams, F. (2003). Use of botulinum toxin type A and type B for spasticity in upper and lower limbs. Physical medicine and rehabilitation clinics of North America, 14(4), 821-835.
- Bellay, V. Y., & Pingle, V. (2015). Effects of Modified Constrained Induced Movement Therapy & Hand Arm Bimanual Induced Therapy in Upper Limb Rehabilitation of Sub-Acute Stroke Patients in Indian Population. Website: www. ijpot. com, 9(4), 27.
- Benvenuti, F., Stuart, M., Cappena, V., Gabella, S., Corsi, S., Taviani, A., ... & Weinrich, M. (2014). Community-based exercise for upper limb paresis: a controlled trial with telerehabilitation. Neurorehabilitation and neural repair, 28(7), 611-620.
- Berends, H. I., Nijlant, J. M., van Putten, M. J., Movig, K. L., & IJzerman, M. J. (2009). Single dose of fluoxetine increases muscle activation in chronic stroke patients. Clinical neuropharmacology, 32(1), 1-5.
- Bertrand, A. M., Fournier, K., Brasey, M. G. W., Kaiser, M. L., Frischknecht, R., & Diserens, K. (2015). Reliability of maximal grip strength measurements and grip strength recovery following a stroke. Journal of Hand Therapy, 28(4), 356-363.
- Bhakta, B. B., Cozens, J. A., Chamberlain, M. A., & Bamford, J. M. (2000). Impact of botulinum toxin type A on disability and carer burden due to arm spasticity after stroke: a randomised double blind placebo controlled trial. Journal of Neurology, Neurosurgery & Psychiatry, 69(2), 217-221.
- Bhatt, E., Nagpal, A., Greer, K. H., Grunewald, T. K., Steele, J. L., Wiemiller, J. W., ... & Carey, J. R. (2007). Effect of finger tracking combined with electrical stimulation on brain reorganization and hand function in subjects with stroke. Experimental brain research, 182(4), 435-447.
- Blackburn, M., Van Vliet, P., & Mockett, S. P. (2002). Reliability of measurements obtained with the modified Ashworth scale in the lower extremities of people with stroke. Physical therapy, 82(1), 25-34.
- Blesneag, A. V., Slăvoacă, D. F., Popa, L., Stan, A. D., Jemna, N., Moldovan, F. I., & Mureșanu, D. F. (2015). Low-frequency rTMS in patients with subacute ischemic stroke: clinical evaluation of short and long-term outcomes and neurophysiological assessment of cortical excitability. Journal of medicine and life, 8(3), 378.
- Boake, C., Noser, E. A., Ro, T., Baraniuk, S., Gaber, M., Johnson, R., ... & Moye, L. A. (2007). Constraint-induced movement therapy during early stroke rehabilitation. Neurorehabilitation and neural repair, 21(1), 14-24.
- Boccuni, L., Meyer, S., Kessner, S. S., De Bruyn, N., Essers, B., Cheng, B., ... & Marinelli, L. (2018). Is There Full or Proportional Somatosensory Recovery in the Upper Limb After Stroke? Investigating Behavioral Outcome and Neural Correlates. Neurorehabilitation and neural repair, 32(8), 691-700.
- Boggio, P. S., Nunes, A., Rigonatti, S. P., Nitsche, M. A., Pascual-Leone, A., & Fregni, F. (2007). Repeated sessions of noninvasive brain DC stimulation is associated with motor

function improvement in stroke patients. Restorative neurology and neuroscience, 25(2), 123-129.

Bonin Pinto, C., Morales-Quezada, L., de Toledo Piza, P. V., Zeng, D., Saleh Vélez, F. G., Ferreira, I. S., ... & Rizzo, L. V. (2019). Combining Fluoxetine and rTMS in Poststroke Motor Recovery: A Placebo-Controlled Double-Blind Randomized Phase 2 Clinical Trial. Neurorehabilitation and neural repair, 33(8), 643-655.

Borges, L. R., Fernandes, A. B., Melo, L. P., Guerra, R. O., & Campos, T. F. (2018). Action observation for upper limb rehabilitation after stroke. Cochrane Database of Systematic Reviews, 21(10), 234-244.

Bornheim, S., Croisier, J. L., Maquet, P., & Kaux, J. F. (2020). Transcranial direct current stimulation associated with physical-therapy in acute stroke patients-A randomized, triple blind, sham-controlled study. Brain Stimulation, 13(2), 329-336.

Bouffioulx, É., Arnould, C., & Thonnard, J. L. (2008). SATIS-Stroke: a satisfaction measure of activities and participation in the actual environment experienced by patients with chronic stroke. Journal of rehabilitation medicine, 40(10), 836-843.

Bouffioulx, É., Arnould, C., Vandervelde, L., & Thonnard, J. L. (2010). Changes in satisfaction with activities and participation between acute, post-acute and chronic stroke phases: A responsiveness study of the SATIS-stroke questionnaire. Journal of rehabilitation medicine, 42(10), 944-948.

Bovend'Eerdt, T. J., Dawes, H., Johansen-Berg, H., & Wade, D. T. (2004). Evaluation of the Modified Jebsen Test of Hand Function and the University of Maryland Arm Questionnaire for Stroke. Clinical rehabilitation, 18(2), 195-202.

Bovend'Eerdt, T. J., Dawes, H., Sackley, C., Izadi, H., & Wade, D. T. (2010). An integrated motor imagery program to improve functional task performance in neurorehabilitation: a single-blind randomized controlled trial. Archives of physical medicine and rehabilitation, 91(6), 939-946.

Bower, K. J., Clark, R. A., McGinley, J. L., Martin, C. L., & Miller, K. J. (2014). Clinical feasibility of the Nintendo Wii[™] for balance training post-stroke: a phase II randomized controlled trial in an inpatient setting. Clinical rehabilitation, 28(9), 912-923.

Bower, K. J., Louie, J., Landesrocha, Y., Seedy, P., Gorelik, A., & Bernhardt, J. (2015). Clinical feasibility of interactive motion-controlled games for stroke rehabilitation. Journal of neuroengineering and rehabilitation, 12(1), 63.

Bowman, B. R., Baker, L. L., & Waters, R. L. (1979). Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Archives of Physical Medicine and Rehabilitation, 60(11), 497-502.

Bowman, B. R., Baker, L. L., & Waters, R. L. (1979). Positional feedback and electrical stimulation: an automated treatment for the hemiplegic wrist. Archives of physical medicine and rehabilitation, 60(11), 497–502.

Boyaci, A., Topuz, O., Alkan, H., Ozgen, M., Sarsan, A., Yildiz, N., & Ardic, F. (2013). Comparison of the effectiveness of active and passive neuromuscular electrical stimulation of

- hemiplegic upper extremities: a randomized, controlled trial. International Journal of Rehabilitation Research, 36(4), 315-322.
- Boyd, L. A., Vidoni, E. D., & Wessel, B. D. (2010). Motor learning after stroke: is skill acquisition a prerequisite for contralesional neuroplastic change?. Neuroscience letters, 482(1), 21-25.
- Brashear, A., Gordon, M. F., Elovic, E., Kassicieh, V. D., Marciniak, C., Do, M., ... & Turkel, C. (2002). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after a stroke. New England Journal of Medicine, 347(6), 395-400.
- Brashear, A., McAfee, A. L., Kuhn, E. R., & Fyffe, J. (2004). Botulinum toxin type B in upper-limb poststroke spasticity: a double-blind, placebo-controlled trial. *Archives of physical medicine and rehabilitation*, *85*(5), 705-709.
- Brashear, A., Zafonte, R., Corcoran, M., Galvez-Jimenez, N., Gracies, J. M., Gordon, M. F., ... & Lee, C. H. (2002). Inter-and intrarater reliability of the Ashworth Scale and the Disability Assessment Scale in patients with upper-limb poststroke spasticity. Archives of physical medicine and rehabilitation, 83(10), 1349-1354.
- Brkic, L., Shaw, L., van Wijck, F., Francis, R., Price, C., Forster, A., ... & Rodgers, H. (2016). Repetitive arm functional tasks after stroke (RAFTAS): a pilot randomised controlled trial. Pilot and Feasibility Studies, 2(1), 50.
- Brogårdh, C., & Sjölund, B. H. (2006). Constraint-induced movement therapy in patients with stroke: a pilot study on effects of small group training and of extended mitt use. Clinical rehabilitation, 20(3), 218-227.
- Brogårdh, C., Persson, A. L., & Sjölund, B. H. (2007). Intra-and inter-rater reliability of the Sollerman hand function test in patients with chronic stroke. Disability and rehabilitation, 29(2), 145-154.
- Brogårdh, C., Vestling, M., & Sjölund, B. H. (2009). Shortened constraint-induced movement therapy in subacute stroke—no effect of using a restraint: a randomized controlled study with independent observers. Journal of rehabilitation medicine, 41(4), 231-236.
- Brokaw, E. B., Nichols, D., Holley, R. J., & Lum, P. S. (2014). Robotic therapy provides a stimulus for upper limb motor recovery after stroke that is complementary to and distinct from conventional therapy. Neurorehabilitation and neural repair, 28(4), 367-376.
- Brown, J. A., Lutsep, H. L., Weinand, M., & Cramer, S. C. (2006). Motor cortex stimulation for the enhancement of recovery from stroke: a prospective, multicenter safety study. Neurosurgery, 58(3), 464-473.
- Brunner, I. C., Skouen, J. S., & Strand, L. I. (2012). Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute phase post stroke? A randomized controlled trial. Clin.Rehabil., 26(12), 1078-1086.
- Brunner, I., Skouen, J. S., Hofstad, H., Aßmus, J., Becker, F., Sanders, A. M., ... & Verheyden, G. (2017). Virtual reality training for upper extremity in subacute stroke (VIRTUES): a multicenter RCT. *Neurology*, 89(24), 2413-2421.

- Brunnstrom, S. (1970). Movement therapy in hemiplegia. A neurophysiological approach, 113-122.
- Burgar, C. G., Lum, P. S., Scremin, A. E., Garber, S. L., Van der Loos, H. M., Kenney, D., & Shor, P. (2011). Robot-assisted upper-limb therapy in acute rehabilitation setting following stroke: Department of Veterans Affairs multisite clinical trial. Journal of Rehabilitation Research & Development, 48(4), 445-459.
- Burgar, C. G., Lum, P. S., Shor, P. C., & Van der Loos, H. M. (2000). Development of robots for rehabilitation therapy: the Palo Alto VA/Stanford experience. Journal of rehabilitation research and development, 37(6), 663-674.
- Bütefisch, C., Hummelsheim, H., Denzler, P., & Mauritz, K. H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. Journal of the neurological sciences, 130(1), 59-68.
- Byl, N. N., Abrams, G. M., Pitsch, E., Fedulow, I., Kim, H., Simkins, M., . . . Rosen, J. (2013). Chronic stroke survivors achieve comparable outcomes following virtual task specific repetitive training guided by a wearable robotic orthosis (UL-EX07) and actual task specific repetitive training guided by a physical therapist. Journal of Hand Therapy, 26(4), 343-352.
- Calabrò, R. S., Accorinti, M., Porcari, B., Carioti, L., Ciatto, L., Billeri, L., ... & Naro, A. (2019). Does hand robotic rehabilitation improve motor function by rebalancing interhemispheric connectivity after chronic stroke? Encouraging data from a randomised-clinical-trial. Clinical Neurophysiology, 130(5), 767-780.
- Calabrò, R. S., Naro, A., Russo, M., Milardi, D., Leo, A., Filoni, S., ... & Bramanti, P. (2017). Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. PloS one, 12(10), e0185936.
- Caliandro, P., Celletti, C., Padua, L., Minciotti, I., Russo, G., Granata, G., ... & Camerota, F. (2012). Focal muscle vibration in the treatment of upper limb spasticity: a pilot randomized controlled trial in patients with chronic stroke. Archives of physical medicine and rehabilitation, 93(9), 1656-1661.
- Cambier, D. C., De Corte, E., Danneels, L. A., & Witvrouw, E. E. (2003). Treating sensory impairments in the post-stroke upper limb with intermittent pneumatic compression. Results of a preliminary trial. Clinical rehabilitation, 17(1), 14-20.
- Capone, F., Miccinilli, S., Pellegrino, G., Zollo, L., Simonetti, D., Bressi, F., ... & Pepe, A. (2017). Transcutaneous vagus nerve stimulation combined with robotic rehabilitation improves upper limb function after stroke. Neural plasticity, 2017.
- Carda, S., Biasiucci, A., Maesani, A., Ionta, S., Moncharmont, J., Clarke, S., ... & Millán, J. D. R. (2017). Electrically assisted movement therapy in chronic stroke patients with severe upper limb paresis: a pilot, single-blind, randomized crossover study. Archives of physical medicine and rehabilitation, 98(8), 1628-1635.
- Carey, J. R., Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L., Rundquist, P., & Ugurbil, K. (2002). Analysis of fMRI and finger tracking training in subjects with chronic stroke. Brain, 125(4), 773-788.

- Carey, L., Macdonell, R., & Matyas, T. A. (2011). SENSe: Study of the Effectiveness of Neurorehabilitation on Sensation: a randomized controlled trial. Neurorehabilitation and neural repair, 25(4), 304-313.
- Carmeli, E., Peleg, S., Bartur, G., Elbo, E., & Vatine, J. J. (2011). HandTutorTM enhanced hand rehabilitation after stroke—a pilot study. Physiotherapy research international, 16(4), 191-200.
- Carpinella, I., Lencioni, T., Bowman, T., Bertoni, R., Turolla, A., Ferrarin, M., & Jonsdottir, J. (2020). Effects of robot therapy on upper body kinematics and arm function in persons post stroke: a pilot randomized controlled trial. Journal of neuroengineering and rehabilitation, 17(1), 10.
- Carrico, C., Chelette, K. C., Westgate, P. M., Powell, E., Nichols, L., Fleischer, A., & Sawaki, L. (2016). Nerve stimulation enhances task-oriented training in chronic, severe motor deficit after stroke: a randomized trial. Stroke, 47(7), 1879-1884.
- Casale, R., Damiani, C., Maestri, R., Fundarò, C., Chimento, P., & Foti, C. (2014). Localized 100 Hz vibration improves function and reduces upper limb spasticity: a double-blind controlled study. Eur J Phys Rehabil Med, 50(5), 495-504.
- Cassidy, J. M., Chu, H., Anderson, D. C., Krach, L. E., Snow, L., Kimberley, T. J., & Carey, J. R. (2015). A comparison of primed low-frequency repetitive transcranial magnetic stimulation treatments in chronic stroke. Brain stimulation, 8(6), 1074-1084.
- Cauraugh JH, Kim SB, Duley A. Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neuroscience Letters. 2005 Jul 1-8;382(1-2):39-44.
- Cauraugh JH, Naik SK, Lodha N, Coombes SA, Summers JJ. Long-term rehabilitation for chronic stroke arm movements: a randomized controlled trial. Clinical Rehabilitation. 2011 Dec;25(12):1086-1096.
- Cauraugh, J. H., & Kim, S. (2003). Progress toward motor recovery with active neuromuscular stimulation: muscle activation pattern evidence after a stroke. Journal of the neurological sciences, 207(1-2), 25-29.
- Cauraugh, J. H., & Kim, S. B. (2003). Stroke motor recovery: active neuromuscular stimulation and repetitive practice schedules. Journal of Neurology, Neurosurgery & Psychiatry, 74(11), 1562-1566.
- Cauraugh, J. H., Kim, S. B., & Duley, A. (2005). Coupled bilateral movements and active neuromuscular stimulation: intralimb transfer evidence during bimanual aiming. Neuroscience letters, 382(1-2), 39-44.
- Cauraugh, J., Light, K., Kim, S., Thigpen, M., & Behrman, A. (2000). Chronic motor dysfunction after stroke: recovering wrist and finger extension by electromyography-triggered neuromuscular stimulation. Stroke, 31(6), 1360-1364.
- Celletti, C., Fara, M. A., Filippi, G. M., La Torre, G., Tozzi, R., Vanacore, N., & Camerota, F. (2017). Focal Muscle Vibration and Physical Exercise in Postmastectomy Recovery: An Explorative Study. BioMed research international, 2017.

- Celnik, P., Hummel, F., Harris-Love, M., Wolk, R., & Cohen, L. G. (2007). Somatosensory stimulation enhances the effects of training functional hand tasks in patients with chronic stroke. Archives of physical medicine and rehabilitation, 88(11), 1369-1376.
- Cha, H. G., & Kim, M. K. (2016). Effects of repetitive transcranial magnetic stimulation on arm function and decreasing unilateral spatial neglect in subacute stroke: a randomized controlled trial. Clinical Rehabilitation, 30(7), 649-656.
- Cha, H. K., Ji, S. G., Kim, M. K., & Chang, J. S. (2014). Effect of transcranial direct current stimulation of function in patients with stroke. Journal of physical therapy science, 26(3), 363-365.
- Chae, J., Bethoux, F., Bohinc, T., Dobos, L., Davis, T., & Friedl, A. (1998). Neuromuscular stimulation for upper extremity motor and functional recovery in acute hemiplegia. Stroke, 29(5), 975-979
- Chae, J., Harley, M. Y., Hisel, T. Z., Corrigan, C. M., Demchak, J. A., Wong, Y. T., & Fang, Z. P. (2009). Intramuscular electrical stimulation for upper limb recovery in chronic hemiparesis: an exploratory randomized clinical trial. Neurorehabilitation and neural repair, 23(6), 569-578.
- Chan, M. K. L., Tong, R. K. Y., & Chung, K. Y. K. (2009). Bilateral upper limb training with functional electric stimulation in patients with chronic stroke. Neurorehabilitation and Neural Repair, 23(4), 357-365.
- Chan, W. C., & Au-Yeung, S. S. (2018). Recovery in the severely impaired arm post-stroke after mirror therapy: a randomized controlled study. American journal of physical medicine & rehabilitation, 97(8), 572-577.
- Chang, W. H., Kim, Y. H., Bang, O. Y., Kim, S. T., Park, Y. H., & Lee, P. K. (2010). Long-term effects of rTMS on motor recovery in patients after subacute stroke. Journal of rehabilitation medicine, 42(8), 758-764.
- Chang, W. H., Park, C. H., Kim, D. Y., Shin, Y. I., Ko, M. H., Lee, A., ... & Kim, Y. H. (2016). Cerebrolysin combined with rehabilitation promotes motor recovery in patients with severe motor impairment after stroke. BMC neurology, 16(1), 31.
- Chanubol, R., Wongphaet, P., Chavanich, N., Werner, C., Hesse, S., Bardeleben, A., & Merholz, J. (2012). A randomized controlled trial of Cognitive Sensory Motor Training Therapy on the recovery of arm function in acute stroke patients. Clinical rehabilitation, 26(12), 1096-1104.
- Chatterjee, K., Stockley, R. C., Lane, S., Watkins, C., Cottrell, K., Ankers, B., ... & Nurmikko, T. (2019). PULSE-I-Is rePetitive Upper Limb SEnsory stimulation early after stroke feasible and acceptable? A stratified single-blinded randomised controlled feasibility study. Trials, 20(1), 388.
- Chau, A. C., Cheung, R. T., Jiang, X., Au-Yeung, P., & Li, L. S. (2009). Acupuncture of motor-implicated acupoints on subacute stroke patients: an fMRI evaluation study. Medical Acupuncture, 21(4), 233-241.
- Chaudhari, R. T., Devi, S., & Dumbre, D. (2019). Effectiveness of Mirror Therapy on Upper Extremity Functioning among Stroke Patients. Executive Editor, 13(1), 128.

- Chemerinski, E., Robinson, R. G., & Kosier, J. T. (2001). Improved recovery in activities of daily living associated with remission of poststroke depression. Stroke, 32(1), 113-117.
- Chen, C. C., Tang, Y. C., Hsu, M. J., Lo, S. K., & Lin, J. H. (2019). Effects of the hybrid of neuromuscular electrical stimulation and noxious thermal stimulation on upper extremity motor recovery in patients with stroke: A randomized controlled trial. Topics in stroke rehabilitation, 26(1), 66-72.
- Chen, J. C., Liang, C. C., & Shaw, F. Z. (2005). Facilitation of sensory and motor recovery by thermal intervention for the hemiplegic upper limb in acute stroke patients: a single-blind randomized clinical trial. Stroke, 36(12), 2665-2669.
- Chen, L., Fang, J., Ma, R., Gu, X., Chen, L., Li, J., & Xu, S. (2016). Additional effects of acupuncture on early comprehensive rehabilitation in patients with mild to moderate acute ischemic stroke: a multicenter randomized controlled trial. *BMC complementary and alternative medicine*, *16*(1), 226.
- Chen, Y. J., Huang, Y. Z., Chen, C. Y., Chen, C. L., Chen, H. C., Wu, C. Y., ... & Chang, T. L. (2019). Intermittent theta burst stimulation enhances upper limb motor function in patients with chronic stroke: a pilot randomized controlled trial. BMC neurology, 19(1), 69.
- Cheng, N., Phua, K. S., Lai, H. S., Tam, P. K., Tang, K. Y., Cheng, K. K., ... & Lim, J. H. (2020). Brain-Computer Interface-based Soft Robotic Glove Rehabilitation for Stroke. IEEE Transactions on Biomedical Engineering.
- Childers, M. K., Brashear, A., Jozefczyk, P., Reding, M., Alexander, D., Good, D., ... & Molloy, P. T. (2004). Dose-dependent response to intramuscular botulinum toxin type A for upper-limb spasticity in patients after a stroke. Archives of Physical Medicine and Rehabilitation, 85(7), 1063-1069.
- Chinembiri, B., Ming, Z., Kai, S., Xiu Fang, Z., & Wei, C. (2020). The fourier M2 robotic machine combined with occupational therapy on post-stroke upper limb function and independence-related quality of life: A randomized clinical trial. Topics in Stroke Rehabilitation, 1-18.
- Chinnavan, E., Ragupathy, R., & Wah, Y. C. (2020). Effectiveness of Mirror Therapy on Upper Limb Motor Functions Among Hemiplegic Patients. Bangladesh Journal of Medical Science, 19(2), 208-213.
- Cho, H. S., & Cha, H. G. (2015). Effect of mirror therapy with tDCS on functional recovery of the upper extremity of stroke patients. Journal of physical therapy science, 27(4), 1045-1047.
- Cho, J. Y., Lee, A., Kim, M. S., Park, E., Chang, W. H., Shin, Y. I., & Kim, Y. H. (2017). Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients. Restorative Neurology and Neuroscience, 35(1), 105-114.
- Cho, K. H., & Song, W. K. (2019). Robot-assisted reach training with an active assistant protocol for long-term upper extremity impairment poststroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 100(2), 213-219.
- Choi, H. S., Shin, W. S., & Bang, D. H. (2019). Mirror therapy using gesture recognition for upper limb function, neck discomfort, and quality of life after chronic stroke: A single-blind

- randomized controlled trial. Medical science monitor: international medical journal of experimental and clinical research, 25, 3271.
- Choi, J. B., & Ma, S. R. (2017). The effect of resting hand splint on hand pain and edema among patients with stroke. Journal of Ecophysiology and Occupational Health, 16(1-2), 37-41.
- Choi, J. B., Yang, J. E., & Song, B. K. (2017). The effect of different types of resting hand splints on spasticity and hand function among patients with stroke. Journal of Ecophysiology and Occupational Health, 16(1-2), 42-51.
- Choi, J. H., Han, E. Y., Kim, B. R., Kim, S. M., Im, S. H., Lee, S. Y., & Hyun, C. W. (2014). Effectiveness of commercial gaming-based virtual reality movement therapy on functional recovery of upper extremity in subacute stroke patients. Annals of rehabilitation medicine, 38(4), 485.
- Choi, Y. H., Ku, J., Lim, H., Kim, Y. H., & Paik, N. J. (2016). Mobile game-based virtual reality rehabilitation program for upper limb dysfunction after ischemic stroke. Restorative neurology and neuroscience, 34(3), 455-463.
- Chollet, F., Tardy, J., Albucher, J. F., Thalamas, C., Berard, E., Lamy, C., ... & Guillon, B. (2011). Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. The Lancet Neurology, 10(2), 123-130.
- Chouhan, S., & Kumar, S. (2012). Comparing the effects of rhythmic auditory cueing and visual cueing in acute hemiparetic stroke. International Journal of Therapy and Rehabilitation, 19(6), 344-351.
- Chuang, I. C., Lin, K. C., Wu, C. Y., Hsieh, Y. W., Liu, C. T., & Chen, C. L. (2017). Using Rasch Analysis to Validate the Motor Activity Log and the Lower Functioning Motor Activity Log in Patients With Stroke. Physical therapy, 97(10), 1030-1040.
- Chuang, L. L., Chen, Y. L., Chen, C. C., Li, Y. C., Wong, A. M. K., Hsu, A. L., & Chang, Y. J. (2017). Effect of EMG-triggered neuromuscular electrical stimulation with bilateral arm training on hemiplegic shoulder pain and arm function after stroke: a randomized controlled trial. Journal of neuroengineering and rehabilitation, 14(1), 122.
- Cipriani, A., Purgato, M., Furukawa, T. A., Trespidi, C., Imperadore, G., Signoretti, A., ... & Barbui, C. (2012). Citalopram versus other anti-depressive agents for depression. Cochrane Database of Systematic Reviews, (7).
- Cirstea, C. M., Ptito, A., & Levin, M. F. (2006). Feedback and cognition in arm motor skill reacquisition after stroke. Stroke, 37(5), 1237–1242.
- Cirstea, M. C., Mitnitski, A. B., Feldman, A. G., & Levin, M. F. (2003). Interjoint coordination dynamics during reaching in stroke. Experimental Brain Research, 151(3), 289-300.
- Classen, J., Liepert, J., Wise, S. P., Hallett, M., & Cohen, L. G. (1998). Rapid plasticity of human cortical movement representation induced by practice. Journal of neurophysiology, 79(2), 1117-1123.

- Colomer, C., Noe, E., & Llorens Rodríguez, R. (2016). Mirror therapy in chronic stroke survivors with severely impaired upper limb function: a randomized controlled trial. European journal of physical and rehabilitation medicine, 52(3), 271-278.
- Comley-White, N., Mudzi, W., & Musenge, E. (2018). Effects of shoulder strapping in patients with stroke: A randomised control trial. The South African journal of physiotherapy, 74(1).
- Conforto, A. B., Anjos, S. M., Saposnik, G., Mello, E. A., Nagaya, E. M., Santos, W., ... & Cohen, L. G. (2012). Transcranial magnetic stimulation in mild to severe hemiparesis early after stroke: a proof of principle and novel approach to improve motor function. Journal of neurology, 259(7), 1399-1405.
- Conforto, A. B., Kaelin-Lang, A., & Cohen, L. G. (2002). Increase in hand muscle strength of stroke patients after somatosensory stimulation. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 51(1), 122-125.
- Conroy, S. S., Whitall, J., Dipietro, L., Jones-Lush, L. M., Zhan, M., Finley, M. A., ... & Bever, C. T. (2011). Effect of gravity on robot-assisted motor training after chronic stroke: a randomized trial. Archives of physical medicine and rehabilitation, 92(11), 1754-1761.
- Conroy, S. S., Wittenberg, G. F., Krebs, H. I., Zhan, M., Bever, C. T., & Whitall, J. (2019). Robot-assisted arm training in chronic stroke: addition of transition-to-task practice. Neurorehabilitation and neural repair, 33(9), 751-761.
- Coote, S., Murphy, B., Harwin, W., & Stokes, E. (2008). The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clinical rehabilitation, 22(5), 395-405.
- Coroian, F., Jourdan, C., Bakhti, K., Palayer, C., Jaussent, A., Picot, M. C., ... & Laffont, I. (2018). Upper limb isokinetic strengthening versus passive mobilization in patients with chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 99(2), 321-328.
- Corti, M., McGuirk, T. E., Wu, S. S., & Patten, C. (2012). Differential effects of power training versus functional task practice on compensation and restoration of arm function after stroke. Neurorehabilitation and neural repair, 26(7), 842-854.
- Costantino, C., Galuppo, L., & Romiti, D. (2017). Short-term effect of local muscle vibration treatment versus sham therapy on upper limb in chronic post-stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med, 53(1), 32-40.
- Cotoi, A., Mirkowski, M., Iruthayarajah, J., Anderson, R., & Teasell, R. (2019). The effect of theta-burst stimulation on unilateral spatial neglect following stroke: a systematic review. Clinical rehabilitation, 33(2), 183-194.
- Cowles, T., Clark, A., Mares, K., Peryer, G., Stuck, R., & Pomeroy, V. (2013). Observation-to-imitate plus practice could add little to physical therapy benefits within 31 days of stroke: translational randomized controlled trial. Neurorehabilitation and Neural Repair, 27(2), 173-182.
- Craig, J. C. (1999). Grating orientation as a measure of tactile spatial acuity. Somatosensory & motor research, 16(3), 197-206.

- Cristina, L. M., Matei, D., Ignat, B., & Popescu, C. D. (2015). Mirror therapy enhances upper extremity motor recovery in stroke patients. Acta neurologica belgica, 115(4), 597-603.
- Crosbie, J. H., Lennon, S., McGoldrick, M. C., McNeill, M. D. J., & McDonough, S. M. (2012). Virtual reality in the rehabilitation of the arm after hemiplegic stroke: a randomized controlled pilot study. Clinical Rehabilitation, 26(9), 798-806.
- Cruz, V., Bento, V., Ruano, L. et al. Motor task performance under vibratory feedback early poststroke: single center, randomized, cross-over, controlled clinical trial. Sci Rep 4, 5670 (2014).
- Cui, H. F., Gao, G. Q., Wang, Y. L., Yu, X. H., Guo, L., & Ren, S. (2014). Therapeutic efficacy analysis of balancing yin-yang manipulation for post-stroke upper limb spasticity. Journal of Acupuncture and Tuina Science, 12(6), 369-374.
- Cunningham, D. A., Varnerin, N., Machado, A., Bonnett, C., Janini, D., Roelle, S., ... & Plow, E. B. (2015). Stimulation targeting higher motor areas in stroke rehabilitation: a proof-of-concept, randomized, double-blinded placebo-controlled study of effectiveness and underlying mechanisms. Restorative neurology and neuroscience, 33(6), 911-926.
- Curado, M. R., Cossio, E. G., Broetz, D., Agostini, M., Cho, W., Brasil, F. L., ... & Ramos-Murguialday, A. (2015). Residual upper arm motor function primes innervation of paretic forearm muscles in chronic stroke after brain-machine interface (BMI) training. PLoS One, 10(10), e0140161.
- da Silva Cameirão, M., Bermudez i Badia, S., Duarte, E., & Verschure, P. F. (2011). Virtual reality based rehabilitation speeds up functional recovery of the upper extremities after stroke: a randomized controlled pilot study in the acute phase of stroke using the rehabilitation gaming system. Restorative neurology and neuroscience, 29(5), 287-298.
- da Silva Ribeiro, N. M., Ferraz, D. D., Pedreira, É., Pinheiro, Í., da Silva Pinto, A. C., Neto, M. G., ... & Masruha, M. R. (2015). Virtual rehabilitation via Nintendo Wii® and conventional physical therapy effectively treat post-stroke hemiparetic patients. Topics in stroke rehabilitation, 22(4), 299-305.
- da Silva, L. C. T. (2017). Nine-hole peg test for evaluation of hand function: The advantages and shortcomings. Neurology India, 65(5), 1033.
- da Silva, P. B., Antunes, F. N., Graef, P., Cechetti, F., & de Souza Pagnussat, A. (2015). Strength training associated with task-oriented training to enhance upper-limb motor function in elderly patients with mild impairment after stroke: a randomized controlled trial. American journal of physical medicine & rehabilitation, 94(1), 11-19.
- D'Agata, F., Peila, E., Cicerale, A., Caglio, M. M., Caroppo, P., Vighetti, S., ... & Molo, M. T. (2016). Cognitive and neurophysiological effects of non-invasive brain stimulation in stroke patients after motor rehabilitation. Frontiers in behavioral neuroscience, 10, 135.
- D'Agata, F., Peila, E., Cicerale, A., Caglio, M. M., Caroppo, P., Vighetti, S., ... & Molo, M. T. (2016). Cognitive and neurophysiological effects of non-invasive brain stimulation in stroke patients after motor rehabilitation. Frontiers in behavioral neuroscience, 10, 135.

- Dahl, A. E., Askim, T., Stock, R., Langørgen, E., Lydersen, S., & Indredavik, B. (2008). Short-and long-term outcome of constraint-induced movement therapy after stroke: a randomized controlled feasibility trial. Clinical Rehabilitation, 22(5), 436-447.
- Dall'Agnol, M. S., & Cechetti, F. (2018). Kinesio taping associated with acupuncture in the treatment of the paretic upper limb after stroke. Journal of Acupuncture and Meridian Studies, 11(2), 67-73.
- Daly, J. J., McCabe, J. P., Holcomb, J., Monkiewicz, M., Gansen, J., & Pundik, S. (2019). Long-Dose intensive therapy is necessary for strong, clinically significant, upper limb functional gains and retained gains in Severe/Moderate chronic stroke. Neurorehabilitation and neural repair, 33(7), 523-537.
- Dam, M., Tonin, P., De Boni, A., Pizzolato, G., Casson, S., Ermani, M., ... & Battistin, L. (1996). Effects of fluoxetine and maprotiline on functional recovery in poststroke hemiplegic patients undergoing rehabilitation therapy. Stroke, 27(7), 1211-1214.
- das Nair, R. D., Moreton, B. J., & Lincoln, N. B. (2011). Rasch analysis of the Nottingham extended activities of daily living scale. Journal of rehabilitation medicine, 43(10), 944-950.
- Daunoraviciene, K., Adomaviciene, A., Grigonyte, A., Griškevičius, J., & Juocevicius, A. (2018). Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Technology and Health Care, (Preprint), 1-10.
- Daunoraviciene, K., Adomaviciene, A., Grigonyte, A., Griškevičius, J., & Juocevicius, A. (2018). Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Technology and Health Care, 26(S2), 533-542.
- Dawson, J., Pierce, D., Dixit, A., Kimberley, T. J., Robertson, M., Tarver, B., ... & Rennaker, R. L. (2016). Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke, 47(1), 143-150.
- de Araújo, R. C., Junior, F. L., Rocha, D. N., Sono, T. S., & Pinotti, M. (2011). Effects of intensive arm training with an electromechanical orthosis in chronic stroke patients: a preliminary study. Archives of physical medicine and rehabilitation, 92(11), 1746-1753.
- de Jong, L. D., Dijkstra, P. U., Gerritsen, J., Geurts, A. C., & Postema, K. (2013). Combined arm stretch positioning and neuromuscular electrical stimulation during rehabilitation does not improve range of motion, shoulder pain or function in patients after stroke: a randomised trial. Journal of physiotherapy, 59(4), 245-254.
- De Kroon, J. R., & IJzerman, M. J. (2008). Electrical stimulation of the upper extremity in stroke: cyclic versus EMG-triggered stimulation. Clinical rehabilitation, 22(8), 690-697.
- de Kroon, J. R., IJzerman, M. J., Lankhorst, G. J., & Zilvold, G. (2004). Electrical Stimulation of the Upper Limb in Stroke: Stimulation of the Extensors of the Hand: vs.: Alternate Stimulation of Flexors and Extensors. American journal of physical medicine & rehabilitation, 83(8), 592-600.
- Dehem, S., Gilliaux, M., Lejeune, T., Delaunois, E., Mbonda, P., Vandermeeren, Y., ... & Stoquart, G. (2018). Effectiveness of a single session of dual-transcranial direct current stimulation in combination with upper limb robotic-assisted rehabilitation in chronic stroke

patients: a randomized, double-blind, cross-over study. International Journal of Rehabilitation Research, 41(2), 138-145.

Dehem, S., Gilliaux, M., Stoquart, G., Detrembleur, C., Jacquemin, G., Palumbo, S., ... & Lejeune, T. (2019). Effectiveness of upper-limb robotic-assisted therapy in the early rehabilitation phase after stroke: A single-blind, randomised, controlled trial. Annals of physical and rehabilitation medicine, 62(5), 313-320.

Del Felice, A., Daloli, V., Masiero, S., & Manganotti, P. (2016). Contralesional cathodal versus dual transcranial direct current stimulation for decreasing upper limb spasticity in chronic stroke individuals: a clinical and neurophysiological study. Journal of Stroke and Cerebrovascular Diseases, 25(12), 2932-2941.

Dell'Uomo, Daniela, Giovanni Morone, Antonio Centrella, Stefano Paolucci, Carlo Caltagirone, Maria Grazia Grasso, Marco Traballesi, and Marco Iosa. "Effects of scapulohumeral rehabilitation protocol on trunk control recovery in patients with subacute stroke: A pilot randomized controlled trial." NeuroRehabilitation 40, no. 3 (2017): 337-343.

Demanboro, A., Sterr, A., Anjos, S. M. D., & Conforto, A. B. (2018). A Brazilian-Portuguese version of the Kinesthetic and Visual Motor Imagery Questionnaire. Arquivos de neuro-psiquiatria, 76(1), 26-31.

Demir, Y., Alaca, R., Yazicioğlu, K., Yaşar, E., & Tan, A. K. (2018). The Effect of Functional Electrical Stimulation on Stroke Recovery: A Randomized Controlled Trial. Journal of Physical Medicine & Rehabilitation Sciences/Fiziksel Tup ve Rehabilitasyon Bilimleri Dergisi, 21(2).

Desrosiers, J., Bourbonnais, D., Corriveau, H., Gosselin, S., & Bravo, G. (2005). Effectiveness of unilateral and symmetrical bilateral task training for arm during the subacute phase after stroke: a randomized controlled trial. Clin.Rehabil., 19(6), 581-593.

Devier, D., Harnar, J., Lopez, L., Brashear, A., & Graham, G. (2017). Rehabilitation plus OnabotulinumtoxinA Improves Motor Function over OnabotulinumtoxinA Alone in Post-Stroke Upper Limb Spasticity: A Single-Blind, Randomized Trial. Toxins, 9(7), 216.

Di Lazzaro, V., Capone, F., Di Pino, G., Pellegrino, G., Florio, L., Zollo, L., ... & Miccinilli, S. (2016). Combining robotic training and non-invasive brain stimulation in severe upper limb-impaired chronic stroke patients. Frontiers in neuroscience, 10, 88.

Di Lazzaro, V., Rothwell, J. C., Talelli, P., Capone, F., Ranieri, F., Wallace, A. C., ... & Dileone, M. (2013). Inhibitory theta burst stimulation of affected hemisphere in chronic stroke: a proof of principle, sham-controlled study. Neuroscience letters, 553, 148-152.

Di, H. Y., Han, S. K., Du, X. L., Li, W. W., & Jia, J. (2017). Applying tuina to exterior-interiorly connected meridians for post-stroke upper limb spasticity. Journal of Acupuncture and Tuina Science, 15(1), 27-30.

Dias, P., Silva, R., Amorim, P., Laíns, J., Roque, E., Serôdio, I., ... & Potel, M. (2019). Using Virtual Reality to Increase Motivation in Poststroke Rehabilitation. IEEE Computer Graphics and Applications, 39(1), 64-70.

Dickstein, R., Hocherman, S., Pillar, T., & Shaham, R. (1986). Stroke rehabilitation: three exercise therapy approaches. Physical Therapy, 66(8), 1233-1238.

- Ding, L., Wang, X., Chen, S., Wang, H., Tian, J., Rong, J., ... & Jia, J. (2019). Camera-Based Mirror Visual Input for Priming Promotes Motor Recovery, Daily Function, and Brain Network Segregation in Subacute Stroke Patients. Neurorehabilitation and neural repair, 33(4), 307-318.
- Ding, L., Wang, X., Guo, X., Chen, S., Wang, H., Jiang, N., & Jia, J. (2018). Camera-based mirror visual feedback: potential to improve motor preparation in stroke patients. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 26(9), 1897-1905.
- Dionisio, A., Duarte, I. C., Patricio, M., & Castelo-Branco, M. (2018). The use of repetitive transcranial magnetic stimulation for stroke rehabilitation: a systematic review. Journal of Stroke and Cerebrovascular Diseases, 27(1), 1-31.
- Dispa, D., Lejeune, T., & Thonnard, J.-L. (2013). The effect of repetitive rhythmic precision grip taskoriented rehabilitation in chronic stroke patients: a pilot study. International Journal of Rehabilitation Research, 36(1), 81.
- Dodakian, L., McKenzie, A. L., Le, V., See, J., Pearson-Fuhrhop, K., Burke Quinlan, E., ... & Reinkensmeyer, D. J. (2017). A home-based telerehabilitation program for patients with stroke. Neurorehabilitation and neural repair, 31(10-11), 923-933.
- Doğan, A., Demirtaş, R., & Özgirgin, N. (2013). Intraarticular hydraulic distension with steroids in the management of hemiplegic shoulder. Turkish Journal of Medical Sciences, 43(2), 304-310.
- Doğan-Aslan, M., Nakipoğlu-Yüzer, G. F., Doğan, A., Karabay, İ., & Özgirgin, N. (2012). The effect of electromyographic biofeedback treatment in improving upper extremity functioning of patients with hemiplegic stroke. Journal of Stroke and Cerebrovascular Diseases, 21(3), 187-192.
- Dohle, C., Püllen, J., Nakaten, A., Küst, J., Rietz, C., & Karbe, H. (2009). Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabilitation and neural repair, 23(3), 209-217.
- Donaldson, C., Tallis, R., Miller, S., Sunderland, A., Lemon, R., & Pomeroy, V. (2009). Effects of conventional physical therapy and functional strength training on upper limb motor recovery after stroke: a randomized phase II study. Neurorehabilitation and neural repair, 23(4), 389-397.
- Dong, Y., Steins, D., Sun, S., Li, F., Amor, J. D., James, C. J., ... & Wade, D. T. (2018). Does feedback on daily activity level from a Smart watch during inpatient stroke rehabilitation increase physical activity levels? Study protocol for a randomized controlled trial. Trials, 19(1), 177.
- Doost, M. Y., Orban de Xivry, J. J., Herman, B., Vanthournhout, L., Riga, A., Bihin, B., ... & Vandermeeren, Y. (2019). Learning a Bimanual Cooperative Skill in Chronic Stroke Under Noninvasive Brain Stimulation: A Randomized Controlled Trial. Neurorehabilitation and neural repair, 33(6), 486-498.
- Dorsch, S., Ada, L., & Canning, C. G. (2014). EMG-triggered electrical stimulation is a feasible intervention to apply to multiple arm muscles in people early after stroke, but does not improve strength and activity more than usual therapy: a randomized feasibility trial. Clinical rehabilitation, 28(5), 482-490.

- dos Santos, R. B. C., Galvão, S. C. B., Frederico, L. M. P., Amaral, N. S. L., Carneiro, M. I. S., de Moura Filho, A. G., ... & Monte-Silva, K. (2019). Cortical and spinal excitability changes after repetitive transcranial magnetic stimulation combined to physiotherapy in stroke spastic patients. Neurological Sciences, 40(6), 1199-1207.
- dos Santos-Fontes, R. L., Ferreiro de Andrade, K. N., Sterr, A., & Conforto, A. B. (2013). Home-based nerve stimulation to enhance effects of motor training in patients in the chronic phase after stroke: a proof-of-principle study. Neurorehabilitation and Neural Repair, 27(6), 483-490.
- Doucet, B. M., & Griffin, L. (2013). High-versus low-frequency stimulation effects on fine motor control in chronic hemiplegia: a pilot study. Topics in stroke rehabilitation, 20(4), 299-307.
- Doussoulin, A., Arancibia, M., Saiz, J., Silva, A., Luengo, M., & Salazar, A. P. (2017). Recovering functional independence after a stroke through Modified Constraint-Induced Therapy. NeuroRehabilitation, 40(2), 243-249.
- Doussoulin, A., Rivas, C., Rivas, R., & Saiz, J. (2018). Effects of modified constraint-induced movement therapy in the recovery of upper extremity function affected by a stroke: a single-blind randomized parallel trial-comparing group versus individual intervention. International Journal of Rehabilitation Research, 41(1), 35-40.
- Dromerick, A. W., Edwards, D. F., & Hahn, M. (2000). Does the application of constraint-induced movement therapy during acute rehabilitation reduce arm impairment after ischemic stroke?. Stroke, 31(12), 2984-2988.
- Dromerick, A. W., Lang, C. E., Birkenmeier, R. L., Wagner, J. M., Miller, J. P., Videen, T. O., ... & Edwards, D. F. (2009). Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology, 73(3), 195-201.
- Du, J., L. Tian, W. Liu, J. Hu, G. Xu, M. Ma, X. Fan et al. "Effects of repetitive transcranial magnetic stimulation on motor recovery and motor cortex excitability in patients with stroke: a randomized controlled trial." European journal of neurology 23, no. 11 (2016): 1666-1672.
- Du, J., Yang, F., Hu, J., Hu, J., Xu, Q., Cong, N., ... & Lu, G. (2019). Effects of high-and low-frequency repetitive transcranial magnetic stimulation on motor recovery in early stroke patients: Evidence from a randomized controlled trial with clinical, neurophysiological and functional imaging assessments. NeuroImage: Clinical, 21, 101620.
- Duff, M., Chen, Y., Cheng, L., Liu, S. M., Blake, P., Wolf, S. L., & Rikakis, T. (2013). Adaptive mixed reality rehabilitation improves quality of reaching movements more than traditional reaching therapy following stroke. *Neurorehabilitation and neural repair*, *27*(4), 306-315.
- Durham, K. F., Sackley, C. M., Wright, C. C., Wing, A. M., Edwards, M. G., & van Vliet, P. (2014). Attentional focus of feedback for improving performance of reach-to-grasp after stroke: a randomised crossover study. Physiotherapy, 100(2), 108–115.
- Easow, A., & Chippala, P. (2019). Effects of Bilateral Upper Limb Task Training on Upper Limb Function in Acute Stroke: A Randomized Controlled Trial. Indian Journal of Physiotherapy & Occupational Therapy, 13(4), 218-222.

- Edwards, D. J., Cortes, M., Rykman-Peltz, A., Chang, J., Elder, J., Thickbroom, G., ... & Fregni, F. (2019). Clinical improvement with intensive robot-assisted arm training in chronic stroke is unchanged by supplementary tDCS. Restorative neurology and neuroscience, 37(2), 167-180.
- Ehrensberger, M., Simpson, D., Broderick, P., Blake, C., Horgan, F., Hickey, P., ... & Monaghan, K. (2019). Unilateral Strength Training and Mirror Therapy in Patients With Chronic Stroke: A Pilot Randomized Trial. American journal of physical medicine & rehabilitation, 98(8), 657-665.
- el-Bahrawy, M. N., & EL-WISHY, A. A. B. (2012). Efficacy of motor relearning approach on hand function in chronic stroke patients. A controlled randomized study. ITALIAN JOURNAL OF, 121.
- El-Helow, M. R., Zamzam, M. L., Fathalla, M. M., El-Badawy, M. A., El Nahhas, N., El-Nabil, L. M., ... & Von Wild, K. (2015). Efficacy of modified constraint-induced movement therapy in acute stroke. *Eur J Phys Rehabil Med*, *51*(4), 371-9.
- Ellis, M. D., Carmona, C., Drogos, J., & Dewald, J. (2018). Progressive abduction loading therapy with horizontal-plane viscous resistance targeting weakness and flexion synergy to treat upper limb function in chronic hemiparetic stroke: a randomized clinical trial. Frontiers in neurology, 9, 71.
- Ellis, M. D., Sukal-Moulton, T., & Dewald, J. P. (2009). Progressive shoulder abduction loading is a crucial element of arm rehabilitation in chronic stroke. Neurorehabilitation and neural repair, 23(8), 862-869.
- Elovic, E. P., Munin, M. C., Kaňovský, P., Hanschmann, A., Hiersemenzel, R., & Marciniak, C. (2016). Randomized, placebo-controlled trial of incobotulinumtoxina for upper-limb post-stroke spasticity. Muscle & nerve, 53(3), 415-421.
- El-Tamawy, M. S., Darwish, M. H., Elkholy, S. H., & Moustafa, E. B. S. (2019). Effect of Repetitive Transcranial Magnetic Stimulation on Cortical and Motor Outcomes Post Stroke: A Randomized Controlled Trial. Indian Journal of Public Health Research & Development, 10(9), 1967-1973.
- Emara, T. H., Moustafa, R. R., Elnahas, N. M., Elganzoury, A. M., Abdo, T. A., Mohamed, S. A., & Eletribi, M. A. (2010). Repetitive transcranial magnetic stimulation at 1Hz and 5Hz produces sustained improvement in motor function and disability after ischaemic stroke. European journal of neurology, 17(9), 1203-1209.
- Emmerson, K. B., Harding, K. E., & Taylor, N. F. (2017). Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: a randomized controlled trial. Clinical rehabilitation, 31(8), 1068-1077.
- Eng, K., Rolin, S., Fazio, R., Biddle, C., O'Grady, M., & Denney, R. (2013). Finger Tapping: Why Can't We Alternate Hands?.Applied Neuropsychology: Adult, 20(3), 187-191.
- England, T. J., Hedstrom, A., O'Sullivan, S. E., Woodhouse, L., Jackson, B., Sprigg, N., & Bath, P. M. (2019). Remote Ischemic Conditioning After Stroke Trial 2: A Phase II b Randomized Controlled Trial in Hyperacute Stroke. Journal of the American Heart Association, 8(23), e013572.

- English, C., Bernhardt, J., Crotty, M., Esterman, A., Segal, L., & Hillier, S. (2015). Circuit class therapy or seven-day week therapy for increasing rehabilitation intensity of therapy after stroke (CIRCIT): a randomized controlled trial. International journal of stroke: official journal of the International Stroke Society, 10(4), 594–602.
- Eraifej, J., Clark, W., France, B., Desando, S., & Moore, D. (2017). Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Systematic reviews, 6(1), 40.
- Ertelt, D., Small, S., Solodkin, A., Dettmers, C., McNamara, A., Binkofski, F., & Buccino, G. (2007). Action observation has a positive impact on rehabilitation of motor deficits after stroke. Neuroimage, 36, T164-T173.
- Ertzgaard, P., Alwin, J., Sorbo, A., Lindgren, M., & Sandsjo, L. (2018). Evaluation of a self-administered transcutaneous electrical stimulation concept for the treatment of spasticity: a randomized placebo-controlled trial. European journal of physical and rehabilitation medicine, 54(4), 507-517.
- Esquenazi, A., Lee, S., Watanabe, T., Nastaskin, A., McKee, C., O'Neill, J., ... & May, J. (2020). A Comparison of the ARMEO to Tabletop Assisted Therapy Exercises as Supplemental Interventions in Acute Stroke Rehabilitation: A Randomized Single Blinded Study. PM&R.
- Etoh, S., Kawamura, K., Tomonaga, K., Miura, S., Harada, S., Noma, T., ... & Shimodozono, M. (2019). Effects of concomitant neuromuscular electrical stimulation during repetitive transcranial magnetic stimulation before repetitive facilitation exercise on the hemiparetic hand. NeuroRehabilitation, (Preprint), 1-7.
- Etoh, S., Noma, T., Ikeda, K., Jonoshita, Y., Ogata, A., Matsumoto, S., ... & Kawahira, K. (2013). Effects of repetitive trascranial magnetic stimulation on repetitive facilitation exercises of the hemiplegic hand in chronic stroke patients. Journal of rehabilitation medicine, 45(9), 843-847.
- Faghri, P. D., & Rodgers, M. M. (1997). The effects of functional neuromuscular stimulation-augmented physical therapy program in the functional recovery of hemiplegic arm in stroke patients. Clinical Kinesiology, 51, 9-15.
- Faghri, P. D., Rodgers, M. M., Glaser, R. M., Bors, J. G., Ho, C., & Akuthota, P. (1994). The effects of functional electrical stimulation on shoulder subluxation, arm function recovery, and shoulder pain in hemiplegic stroke patients. Archives of physical medicine and rehabilitation, 75(1), 73-79.
- Fan, S. C., Su, F. C., Chen, S. S., Hou, W. H., Sun, J. S., Chen, K. H., ... & Hsu, S. H. (2014). Improved intrinsic motivation and muscle activation patterns in reaching task using virtual reality training for stroke rehabilitation: A pilot randomized control trial. Journal of Medical and Biological Engineering, 34(4), 399-407.
- Fan, Y. T., Lin, K. C., Liu, H. L., Wu, C. Y., Wai, Y. Y., & Lee, T. H. (2016). Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase, 22(5), 416-425.

- Fan, Y. T., Lin, K. C., Liu, H. L., Wu, C. Y., Wai, Y. Y., & Lee, T. H. (2016). Neural correlates of motor recovery after robot-assisted stroke rehabilitation: a case series study. Neurocase, 22(5), 416-425.
- Faria, A. L., Cameirão, M. S., Couras, J. F., Aguiar, J. R., Costa, G. M., & i Badia, S. B. (2018). Combined cognitive-motor rehabilitation in virtual reality improves motor outcomes in chronic stroke—a pilot study. Frontiers in psychology, 9.
- Fasoli, S. E., Krebs, H. I., Ferraro, M., Hogan, N., & Volpe, B. T. (2004). Does shorter rehabilitation limit potential recovery poststroke? Neurorehabilitation and neural repair, 18(2), 88-94.
- Fayazi, M., Dehkordi, S. N., Dadgoo, M., & Salehi, M. (2012). Test-retest reliability of Motricity Index strength assessments for lower extremity in post stroke hemiparesis. Medical journal of the Islamic Republic of Iran, 26(1), 27.
- Ferraro, M., Demaio, J. H., Krol, J., Trudell, C., Rannekleiv, K., Edelstein, L., ... & Krebs, H. I. (2002). Assessing the motor status score: a scale for the evaluation of upper limb motor outcomes in patients after stroke. Neurorehabilitation and neural repair, 16(3), 283-289.
- Feys, H. M., De Weerdt, W. J., Selz, B. E., Cox Steck, G. A., Spichiger, R., Vereeck, L. E., ... & Van Hoydonck, G. A. (1998). Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: a single-blind, randomized, controlled multicenter trial. Stroke, 29(4), 785-792.
- Feys, P., Duportail, M., Kos, D., Van Aschand, P., & Ketelaer, P. (2002). Validity of the TEMPA for the measurement of upper limb function in multiple sclerosis. Clinical rehabilitation, 16(2), 166-173.
- Figlewski, K., Blicher, J. U., Mortensen, J., Severinsen, K. E., Nielsen, J. F., & Andersen, H. (2017). Transcranial direct current stimulation potentiates improvements in functional ability in patients with chronic stroke receiving constraint-induced movement therapy. Stroke, 48(1), 229-232.
- Fleming, M. K., Sorinola, I. O., Roberts-Lewis, S. F., Wolfe, C. D., Wellwood, I., & Newham, D. J. (2015). The effect of combined somatosensory stimulation and task-specific training on upper limb function in chronic stroke: a double-blind randomized controlled trial. Neurorehabilitation and Neural Repair, 29(2), 143-152.
- Folkerts, M. A., Hijmans, J. M., Elsinghorst, A. L., Mulderij, Y., Murgia, A., & Dekker, R. (2017). Effectiveness and feasibility of eccentric and task-oriented strength training in individuals with stroke. NeuroRehabilitation, 40(4), 459-471.
- Fong, K. N., Ting, K. H., Chan, C. C., & Li, L. S. (2019). Mirror therapy with bilateral arm training for hemiplegic upper extremity motor functions in patients with chronic stroke. Hong Kong Med J, 25(Suppl 3), 30-4.
- Fragoso, A. P. S., & Ferreira, A. S. (2012). Immediate effects of acupuncture on biceps brachii muscle function in healthy and post-stroke subjects. Chinese medicine, 7(1), 7.
- Franceschini, M., Ceravolo, M. G., Agosti, M., Cavallini, P., Bonassi, S., Dall'Armi, V., ... & Sale, P. (2012). Clinical relevance of action observation in upper-limb stroke rehabilitation: a possible

- role in recovery of functional dexterity. A randomized clinical trial. Neurorehabilitation and neural repair, 26(5), 456-462.
- Francisco, G. E., Boake, C., & Vaughn, A. (2002). Botulinum toxin in upper limb spasticity after acquired brain injury: a randomized trial comparing dilution techniques. American journal of physical medicine & rehabilitation, 81(5), 355-363.
- Francisco, G., Chae, J., Chawla, H., Kirshblum, S., Zorowitz, R., Lewis, G., & Pang, S. (1998). Electromyogram-triggered neuromuscular stimulation for improving the arm function of acute stroke survivors: a randomized pilot study. Archives of physical medicine and rehabilitation, 79(5), 570-575.
- Fregni, F., Boggio, P. S., Mansur, C. G., Wagner, T., Ferreira, M. J., Lima, M. C., ... & Pascual-Leone, A. (2005). Transcranial direct current stimulation of the unaffected hemisphere in stroke patients. Neuroreport, 16(14), 1551-1555.
- Fregni, F., Boggio, P. S., Valle, A. C., Rocha, R. R., Duarte, J., Ferreira, M. J., ... & Freedman, S. D. (2006). A sham-controlled trial of a 5-day course of repetitive transcranial magnetic stimulation of the unaffected hemisphere in stroke patients. Stroke, 37(8), 2115-2122.
- Friedman, N., Chan, V., Reinkensmeyer, A. N., Beroukhim, A., Zambrano, G. J., Bachman, M., & Reinkensmeyer, D. J. (2014). Retraining and assessing hand movement after stroke using the MusicGlove: comparison with conventional hand therapy and isometric grip training. Journal of neuroengineering and rehabilitation, 11(1), 76.
- Fujioka, T., Dawson, D. R., Wright, R., Honjo, K., Chen, J. L., Chen, J. J., ... & Ross, B. (2018). The effects of music supported therapy on motor, cognitive, and psychosocial functions in chronic stroke. Annals of the New York Academy of Sciences, 1423(1), 264-274.
- Fulk, G., Martin, R., & Page, S. J. (2017). Clinically important difference of the arm motor ability test in Stroke survivors. *Neurorehabilitation and neural repair*, *31*(3), 272-279.
- Fusco, A., Assenza, F., Iosa, M., Izzo, S., Altavilla, R., Paolucci, S., & Vernieri, F. (2014). The ineffective role of cathodal tDCS in enhancing the functional motor outcomes in early phase of stroke rehabilitation: an experimental trial. BioMed research international, 2014.
- Fusco, A., De Angelis, D., Morone, G., Maglione, L., Paolucci, T., Bragoni, M., & Venturiero, V. (2013). The ABC of tDCS: effects of anodal, bilateral and cathodal montages of transcranial direct current stimulation in patients with stroke—a pilot study. Stroke research and treatment, 2013.
- Gabr, U., Levine, P., & Page, S. J. (2005). Home-based electromyography-triggered stimulation in chronic stroke. Clinical rehabilitation, 19(7), 737-745.
- Galvão, S. C. B., Dos Santos, R. B. C., Dos Santos, P. B., Cabral, M. E., & Monte-Silva, K. (2014). Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 95(2), 222-229.
- Gandolfi, M., Valè, N., Dimitrova, E. K., Mazzoleni, S., Battini, E., Filippetti, M., ... & Smania, N. (2019). Effectiveness of robot-assisted upper limb training on spasticity, function and muscle

- activity in chronic stroke patients treated with botulinum toxin: a randomized single-blinded controlled trial. Frontiers in neurology, 10, 41.
- Gao, H., Li, X., Gao, X., & Ma, B. (2013). Contralateral needling at unblocked collaterals for hemiplegia following acute ischemic stroke. Neural regeneration research, 8(31), 2914.
- Gauthier, L. V., Taub, E., Perkins, C., Ortmann, M., Mark, V. W., & Uswatte, G. (2008). Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke; a journal of cerebral circulation, 39(5), 1520.
- Gelber, D. A., Josefczyk, B., Herrman, D., Good, D. C., & Verhulst, S. J. (1995). Comparison of two therapy approaches in the rehabilitation of the pure motor hemiparetic stroke patient. Journal of Neurologic Rehabilitation, 9(4), 191-196.
- Gelber, D. A., Josefczyk, B., Herrman, D., Good, D. C., & Verhulst, S. J. (1995). Comparison of Two Therapy Approaches in the Rehabilitation of the Pure Motor Hemiparetic Stroke Patient. Journal of Neurologic Rehabilitation, 9(4), 191–196.
- Gharib, N. M., Aboumousa, A. M., Elowishy, A. A., Rezk-Allah, S. S., & Yousef, F. S. (2015). Efficacy of electrical stimulation as an adjunct to repetitive task practice therapy on skilled hand performance in hemiparetic stroke patients: a randomized controlled trial. Clinical rehabilitation, 29(4), 355-364.
- Ghaziani, E., Couppé, C., Siersma, V., Søndergaard, M., Christensen, H., & Magnusson, S. P. (2018). Electrical somatosensory stimulation in early rehabilitation of arm paresis after stroke: a randomized controlled trial. Neurorehabilitation and neural repair, 32(10), 899-912.
- Gilmore, P. E., & Spaulding, S. J. (2007). Motor learning and the use of videotape feedback after stroke. Topics in stroke rehabilitation, 14(5), 28–36.
- Giray, E., Gencer Atalay, K., Eren, N., Gündüz, O. H., & Karadag-Saygi, E. (2019). Effects of dynamic lycra orthosis as an adjunct to rehabilitation after botulinum toxin-A injection of the upper-limb in adults following stroke: A single-blinded randomized controlled pilot study. Topics in Stroke Rehabilitation, 1-9.
- Givon, N., Zeilig, G., Weingarden, H., & Rand, D. (2016). Video-games used in a group setting is feasible and effective to improve indicators of physical activity in individuals with chronic stroke: a randomized controlled trial. Clinical rehabilitation, 30(4), 383-392.
- Gladstone, D. J., Danells, C. J., Armesto, A., McIlroy, W. E., Staines, W. R., Graham, S. J., ... & Black, S. E. (2006). Physiotherapy coupled with dextroamphetamine for rehabilitation after hemiparetic stroke: a randomized, double-blind, placebo-controlled trial. Stroke, 37(1), 179-185.
- González, N., Bilbao, A., Forjaz, M. J., Ayala, A., Orive, M., Garcia-Gutierrez, S., ... & Quintana, J. M. (2018). Psychometric characteristics of the Spanish version of the Barthel Index. Aging clinical and experimental research, 30(5), 489-497.
- Gonzalez, V., Rowson, J., & Yoxall, A. (2017). Analyzing finger interdependencies during the Purdue Pegboard Test and comparative activities of daily living. Journal of Hand Therapy, 30(1), 80-88.

- Goodwill, A. M., Teo, W. P., Morgan, P., Daly, R. M., & Kidgell, D. J. (2016). Bihemispheric-tDCS and upper limb rehabilitation improves retention of motor function in chronic stroke: a pilot study. Frontiers in human neuroscience, 10, 258.
- Gor-García-Fogeda, M. D., Molina-Rueda, F., Cuesta-Gómez, A., Carratalá-Tejada, M., Alguacil-Diego, I. M., & Miangolarra-Page, J. C. (2014). Scales to assess gross motor function in stroke patients: a systematic review. Archives of physical medicine and rehabilitation, 95(6), 1174-1183.
- Gorst, T., Rogers, A., Morrison, S. C., Cramp, M., Paton, J., Freeman, J., & Marsden, J. (2018). The prevalence, distribution, and functional importance of lower limb somatosensory impairments in chronic stroke survivors: a cross sectional observational study. Disability and rehabilitation, 1-8.
- Gosman-Hedström, G., Claesson, L., Klingenstierna, U., Carlsson, J., Olausson, B., Frizell, M., ... & Blomstrand, C. (1998). Effects of acupuncture treatment on daily life activities and quality of life: a controlled, prospective, and randomized study of acute stroke patients. Stroke, 29(10), 2100-2108.
- Gracies, J. M., Bayle, N., Goldberg, S., & Simpson, D. M. (2014). Botulinum toxin type B in the spastic arm: a randomized, double-blind, placebo-controlled, preliminary study. Archives of physical medicine and rehabilitation, 95(7), 1303-1311.
- Gracies, J. M., Brashear, A., Jech, R., McAllister, P., Banach, M., Valkovic, P., ... & Khatkova, S. (2015). Safety and efficacy of abobotulinumtoxinA for hemiparesis in adults with upper limb spasticity after stroke or traumatic brain injury: a double-blind randomised controlled trial. The Lancet Neurology, 14(10), 992-1001.
- Graef, P., Michaelsen, S. M., Dadalt, M. L., Rodrigues, D. A., Pereira, F., & Pagnussat, A. S. (2016). Effects of functional and analytical strength training on upper-extremity activity after stroke: a randomized controlled trial. Brazilian journal of physical therapy, (AHEAD), 0-0.
- Granger, C. V., Cotter, A. C., Hamilton, B. B., & Fiedler, R. C. (1993). Functional assessment scales: a study of persons after stroke. Archives of physical medicine and rehabilitation, 74(2), 133-138.
- Granger, C. V., Deutsch, A., & Linn, R. T. (1998). Rasch analysis of the Functional Independence Measure (FIM™) mastery test. Archives of physical medicine and rehabilitation, 79(1), 52-57.
- Gu, S. Y., & Chang, M. C. (2017). The effects of 10-Hz repetitive transcranial magnetic stimulation on depression in chronic stroke patients. Brain stimulation, 10(2), 270-274.
- Guan, Y. Z., Li, J., Zhang, X. W., Wu, S., Du, H., Cui, L. Y., & Zhang, W. H. (2017). Effectiveness of repetitive transcranial magnetic stimulation (rTMS) after acute stroke: A one-year longitudinal randomized trial. CNS neuroscience & therapeutics, 23(12), 940-946.
- Gummesson, C., Ward, M. M., & Atroshi, I. (2006). The shortened disabilities of the arm, shoulder and hand questionnaire (Quick DASH): validity and reliability based on responses within the full-length DASH. BMC musculoskeletal disorders, 7(1), 44.

- Guo, J., Qian, S., Wang, Y., & Xu, A. (2019). Clinical study of combined mirror and extracorporeal shock wave therapy on upper limb spasticity in poststroke patients. International journal of rehabilitation research. Internationale Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, 42(1), 31.
- Gurbuz, N., Afsar, S. I., Ayaş, S., & Cosar, S. N. S. (2016). Effect of mirror therapy on upper extremity motor function in stroke patients: a randomized controlled trial. Journal of physical therapy science, 28(9), 2501-2506.
- Hammer, A., & Lindmark, B. (2009). Is forced use of the paretic upper limb beneficial? A randomized pilot study during subacute post-stroke recovery. Clinical rehabilitation, 23(5), 424-433.
- Han, C., Wang, Q., Meng, P. P., & Qi, M. Z. (2013). Effects of intensity of arm training on hemiplegic upper extremity motor recovery in stroke patients: a randomized controlled trial. Clinical rehabilitation, 27(1), 75–81.
- Han, J. S., & Terenius, L. (1982). Neurochemical basis of acupuncture analgesia. Annual review of pharmacology and toxicology, 22(1), 193-220.
- Han, K. J., & Kim, J. Y. (2016). The effects of bilateral movement training on upper limb function in chronic stroke patients. Journal of physical therapy science, 28(8), 2299-2302.
- HAN, S. K., HAO, H. Y., LIU, F. H., Qing, L. I., LI, X. F., & Wei-Hong, Y. A. N. G. (2015). Effect of meridian sinew row needling combined with dermal needling on spasticity of post-stroke patients with upper limb hemiparalysis: a multi-center randomized controlled trial. World Journal of Acupuncture-Moxibustion, 25(1), 13-18.
- Hanlan, A., Mills, P., Lipson, R., & Finlayson, H. (2017). Interdisciplinary spasticity management clinic outcomes using the Goal Attainment Scale: A retrospective chart review. Journal of rehabilitation medicine, 49(5), 423-430.
- Hara, Y., Ogawa, S., & Muraoka, Y. (2006). Hybrid power-assisted functional electrical stimulation to improve hemiparetic upper-extremity function. American journal of physical medicine & rehabilitation, 85(12), 977-985.
- Hara, Y., Ogawa, S., Tsujiuchi, K., & Muraoka, Y. (2008). A home-based rehabilitation program for the hemiplegic upper extremity by power-assisted functional electrical stimulation. Disability and Rehabilitation, 30(4), 296-304.
- Harvey, R. L., Edwards, D., Dunning, K., Fregni, F., Stein, J., Laine, J., ... & Goldstein, L. B. (2018). Randomized sham-controlled trial of navigated repetitive transcranial magnetic stimulation for motor recovery in stroke: the NICHE trial. Stroke, 49(9), 2138-2146.
- Hayner, K., Gibson, G., & Giles, G. M. (2010). Comparison of constraint-induced movement therapy and bilateral treatment of equal intensity in people with chronic upper-extremity dysfunction after cerebrovascular accident. American Journal of Occupational Therapy, 64(4), 528-539.
- Hays, S. A. (2016). Enhancing rehabilitative therapies with vagus nerve stimulation. Neurotherapeutics, 13(2), 382-394.

- Hayward, K. S., Barker, R. N., Brauer, S. G., Lloyd, D., Horsley, S. A., & Carson, R. G. (2013). SMART Arm with outcome-triggered electrical stimulation: a pilot randomized clinical trial. Topics in stroke rehabilitation, 20(4), 289-298.
- Hayward, K. S., Barker, R. N., Brauer, S. G., Lloyd, D., Horsley, S. A., & Carson, R. G. (2013). SMART Arm with outcome-triggered electrical stimulation: a pilot randomized clinical trial. Topics in stroke rehabilitation, 20(4), 289-298.
- Heckmann, J., Mokrusch, T., Kröckel, A., Warnke, S., Von Stockert, T., & Neundörfer, B. (1997). EMG-triggered electrical muscle stimulation in the treatment of central hemiparesis after a stroke. European journal of physical medicine & rehabilitation, 7(5), 138-141.
- Heldner, M. R., Zubler, C., Mattle, H. P., Schroth, G., Weck, A., Mono, M. L., ... & Yan, X. (2013). National Institutes of Health stroke scale score and vessel occlusion in 2152 patients with acute ischemic stroke. Stroke, 44(4), 1153-1157.
- Heller, A., Wade, D. T., Wood, V. A., Sunderland, A., Hewer, R. L., & Ward, E. (1987). Arm function after stroke: measurement and recovery over the first three months. Journal of Neurology, Neurosurgery & Psychiatry, 50(6), 714-719.
- Hemmen, B., & Seelen, H. A. M. (2007). Effects of movement imagery and electromyography-triggered feedback on arm—hand function in stroke patients in the subacute phase. Clinical Rehabilitation, 21(7), 587-594.
- Hendy, A. M., & Kidgell, D. J. (2014). Anodal-tDCS applied during unilateral strength training increases strength and corticospinal excitability in the untrained homologous muscle. Experimental brain research, 232(10), 3243-3252.
- Henrique, P. P., Colussi, E. L., & De Marchi, A. C. (2019). Effects of Exergame on Patients' Balance and Upper Limb Motor Function after Stroke: A Randomized Controlled Trial. Journal of Stroke and Cerebrovascular Diseases, 28(8), 2351-2357.
- Herrold, A. A., Pape, T. L. B., Guernon, A., Mallinson, T., Collins, E., & Jordan, N. (2014). Prescribing multiple neurostimulants during rehabilitation for severe brain injury. The Scientific World Journal, 2014.
- Hesse, S., Heß, A., Werner C, C., Kabbert, N., & Buschfort, R. (2014). Effect on arm function and cost of robot-assisted group therapy in subacute patients with stroke and a moderately to severely affected arm: a randomized controlled trial. Clinical rehabilitation, 28(7), 637-647.
- Hesse, S., Mach, H., Fröhlich, S., Behrend, S., Werner, C., & Melzer, I. (2012). An early botulinum toxin A treatment in subacute stroke patients may prevent a disabling finger flexor stiffness six months later: a randomized controlled trial. Clinical rehabilitation, 26(3), 237-245.
- Hesse, S., Reiter, F., Konrad, M., & Jahnke, M. T. (1998). Botulinum toxin type A and short-term electrical stimulation in the treatment of upper limb flexor spasticity after stroke: a randomized, double-blind, placebo-controlled trial. Clinical Rehabilitation, 12(5), 381-388.
- Hesse, S., Waldner, A., Mehrholz, J., Tomelleri, C., Pohl, M., & Werner, C. (2011). Combined transcranial direct current stimulation and robot-assisted arm training in subacute stroke patients: an exploratory, randomized multicenter trial. Neurorehabilitation and neural repair, 25(9), 838-846.

- Hesse, S., Welz, A., Werner, C., Quentin, B., & Wissel, J. (2011). Comparison of an intermittent high-intensity vs continuous low-intensity physiotherapy service over 12 months in community-dwelling people with stroke: a randomized trial. Clinical rehabilitation, 25(2), 146–156.
- Hesse, S., Werner, C., Pohl, M., Mehrholz, J., Puzich, U., & Krebs, H. I. (2008). Mechanical arm trainer for the treatment of the severely affected arm after a stroke: a single-blinded randomized trial in two centers. American journal of physical medicine & rehabilitation, 87(10), 779-788.
- Hesse, S., Werner, C., Pohl, M., Rueckriem, S., Mehrholz, J., & Lingnau, M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke, 36(9), 1960-1966.
- Higgins, J., Koski, L., & Xie, H. (2013). Combining rTMS and task-oriented training in the rehabilitation of the arm after stroke: a pilot randomized controlled trial. Stroke Research and Treatment, 2013.
- Higgins, J., Mayo, N. E., Desrosiers, J., Salbach, N. M., & Ahmed, S. (2005). Upper-limb function and recovery in the acute phase poststroke. Journal of Rehabilitation Research & Development, 42(1).
- Högg, S., Holzgraefe, M., Drüge, C., Hauschild, F., Herrmann, C., Obermann, M., & Mehrholz, J. (2020). High-intensity arm resistance training does not lead to better outcomes than low-intensity resistance training in patients after subacute stroke: A randomized controlled trial. Journal of rehabilitation medicine, 52(6), jrm00067.
- Holland, B., & Pokorny, M. E. (2001). Slow stroke back massage: its effect on patients in a rehabilitation setting. Rehabilitation Nursing, 26(5), 182-186.
- Hong, I. K., Choi, J. B., & Lee, J. H. (2012). Cortical changes after mental imagery training combined with electromyography-triggered electrical stimulation in patients with chronic stroke. Stroke, 43(9), 2506-2509.
- Hong, X., Lu, Z. K., Teh, I., Nasrallah, F. A., Teo, W. P., Ang, K. K., ... & Chuang, K. H. (2017). Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Scientific reports, 7(1), 9222.
- Hopwood, V., Lewith, G., Prescott, P., & Campbell, M. J. (2008). Evaluating the efficacy of acupuncture in defined aspects of stroke recovery. Journal of neurology, 255(6), 858.
- Horsley, S., Lannin, N. A., Hayward, K. S., & Herbert, R. D. (2019). Additional early active repetitive motor training did not prevent contracture in adults receiving task-specific upper limb training after stroke: a randomised trial. Journal of physiotherapy, 65(2), 88-94.
- Horvat, M., Pitetti, K. H., & Croce, R. (1997). Isokinetic torque, average power, and flexion/extension ratios in nondisabled adults and adults with mental retardation. Journal of Orthopaedic & Sports Physical Therapy, 25(6), 395-399.
- Hosomi, K., Morris, S., Sakamoto, T., Taguchi, J., Maruo, T., Kageyama, Y., ... & Saitoh, Y. (2016). Daily repetitive transcranial magnetic stimulation for poststroke upper limb paresis in the subacute period. Journal of Stroke and Cerebrovascular Diseases, 25(7), 1655-1664.

- Hou, L. J., Han, S. K., Gao, W. N., Xu, Y. N., Yang, X. W., & Yang, W. H. (2014). Aligned acupuncture at muscle regions plus cutaneous needle for upper limb spasticity after stroke: A multicenter randomized controlled trial. Journal of Acupuncture and Tuina Science, 12(3), 141-145.
- Housman, S. J., Scott, K. M., & Reinkensmeyer, D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabilitation and neural repair, 23(5), 505–514.
- Houwink, A., Roorda, L. D., Smits, W., Molenaar, I. W., & Geurts, A. C. (2011). Measuring upper limb capacity in patients after stroke: reliability and validity of the stroke upper limb capacity scale. Archives of physical medicine and rehabilitation, 92(9), 1418-1422.
- Hsieh, R. L., Wang, L. Y., & Lee, W. C. (2007). Additional therapeutic effects of electroacupuncture in conjunction with conventional rehabilitation for patients with first-ever ischaemic stroke. Journal of Rehabilitation Medicine, 39(3), 205-211.
- Hsieh, Y. W., Liing, R. J., Lin, K. C., Wu, C. Y., Liou, T. H., Lin, J. C., & Hung, J. W. (2016). Sequencing bilateral robot-assisted arm therapy and constraint-induced therapy improves reach to press and trunk kinematics in patients with stroke. Journal of neuroengineering and rehabilitation, 13(1), 31.
- Hsieh, Y. W., Lin, K. C., Horng, Y. S., Wu, C. Y., Wu, T. C., & Ku, F. L. (2014). Sequential combination of robot-assisted therapy and constraint-induced therapy in stroke rehabilitation: a randomized controlled trial. Journal of neurology, 261(5), 1037-1045.
- Hsieh, Y. W., Lin, K. C., Wu, C. Y., Shih, T. Y., Li, M. W., & Chen, C. L. (2018). Comparison of proximal versus distal upper-limb robotic rehabilitation on motor performance after stroke: a cluster controlled trial. Scientific reports, 8(1), 1-11.
- Hsieh, Y. W., Wu, C. Y., Liao, W. W., Lin, K. C., Wu, K. Y., & Lee, C. Y. (2011). Effects of treatment intensity in upper limb robot-assisted therapy for chronic stroke: a pilot randomized controlled trial. Neurorehabilitation and neural repair, 25(6), 503-511.
- Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose–response relationship of robot-assisted stroke motor rehabilitation: the impact of initial motor status. Stroke, 43(10), 2729-2734.
- Hsieh, Y. W., Wu, C. Y., Wang, W. E., Lin, K. C., Chang, K. C., Chen, C. C., & Liu, C. T. (2017). Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial. Clinical rehabilitation, 31(2), 225-233.
- Hsieh, Y., Wu, C., Wang, W., Lin, K., Chang, K., Chen, C., & Liu, C. (2017). Bilateral robotic priming before task-oriented approach in subacute stroke rehabilitation: a pilot randomized controlled trial. Clinical Rehabilitation, 31(2), 225 233.
- Hsing, W. T., Imamura, M., Weaver, K., Fregni, F., & Azevedo Neto, R. S. (2012). Clinical effects of scalp electrical acupuncture in stroke: a sham-controlled randomized clinical trial. The Journal of Alternative and Complementary Medicine, 18(4), 341-346.
- Hsu, H. Y., Chiu, H. Y., Kuan, T. S., Tsai, C. L., Su, F. C., & Kuo, L. C. (2019). Robotic assisted therapy with bilateral practice improves task and motor performance in the upper

- extremities of chronic stroke patients: A randomised controlled trial. Australian occupational therapy journal, 66(5), 637-647.
- Hsu, S. S., Hu, M. H., Wang, Y. H., Yip, P. K., Chiu, J. W., & Hsieh, C. L. (2010). Dose-response relation between neuromuscular electrical stimulation and upper-extremity function in patients with stroke. Stroke, 41(4), 821-824.
- Hsu, Y. F., Huang, Y. Z., Lin, Y. Y., Tang, C. W., Liao, K. K., Lee, P. L., ... & Lee, I. H. (2013). Intermittent theta burst stimulation over ipsilesional primary motor cortex of subacute ischemic stroke patients: a pilot study. Brain stimulation, 6(2), 166-174.
- Hu, H. H., Chung, C., Liu, T. J., Chen, R. C., Chen, C. H., Chou, P., ... & Tsuei, J. T. (1993). A randomized controlled trial on the treatment for acute partial ischemic stroke with acupuncture. Neuroepidemiology, 12(2), 106-113.
- Hu, X. L., Tong, K. Y., Song, R., Zheng, X. J., & Leung, W. W. (2009). A comparison between electromyography-driven robot and passive motion device on wrist rehabilitation for chronic stroke. Neurorehabilitation and neural repair, 23(8), 837-846.
- Hu, X. L., Tong, R. K. Y., Ho, N. S., Xue, J. J., Rong, W., & Li, L. S. (2015). Wrist rehabilitation assisted by an electromyography-driven neuromuscular electrical stimulation robot after stroke. Neurorehabilitation and neural repair, 29(8), 767-776.
- Huang, M., Harvey, R. L., Ellen Stoykov, M., Ruland, S., Weinand, M., Lowry, D., & Levy, R. (2008). Cortical stimulation for upper limb recovery following ischemic stroke: a small phase II pilot study of a fully implanted stimulator. Topics in stroke rehabilitation, 15(2), 160-172.
- Huang, Y. C., Chen, P. C., Tso, H. H., Yang, Y. C., Ho, T. L., & Leong, C. P. (2019). Effects of kinesio taping on hemiplegic hand in patients with upper limb post-stroke spasticity: a randomized controlled pilot study. European journal of physical and rehabilitation medicine, 55(5), 551-557.
- Huang, Y., Nam, C., Li, W., Rong, W., Xie, Y., Liu, Y., ... & Hu, X. (2020). A comparison of the rehabilitation effectiveness of neuromuscular electrical stimulation robotic hand training and pure robotic hand training after stroke: A randomized controlled trial. Biomedical Signal Processing and Control, 56, 101723.
- Hubbard, I. J., Carey, L. M., Budd, T. W., Levi, C., McElduff, P., Hudson, S., ... & Parsons, M. W. (2015). A randomized controlled trial of the effect of early upper-limb training on stroke recovery and brain activation. Neurorehabilitation and neural repair, 29(8), 703-713.
- Hummel, F., Celnik, P., Giraux, P., Floel, A., Wu, W. H., Gerloff, C., & Cohen, L. G. (2005). Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. Brain, 128(3), 490-499.
- Hung, C. S., Hsieh, Y. W., Wu, C. Y., Chen, Y. J., Lin, K. C., Chen, C. L., ... & Horng, Y. S. (2019). Hybrid rehabilitation therapies on upper-limb function and goal attainment in chronic stroke. OTJR: occupation, participation and health, 39(2), 116-123.
- Hung, C. S., Hsieh, Y. W., Wu, C. Y., Lin, Y. T., Lin, K. C., & Chen, C. L. (2016). The effects of combination of robot-assisted therapy with task-specific or impairment-oriented training on motor function and quality of life in chronic stroke. PM&R, 8(8), 721-729.

- Hung, C. S., Lin, K. C., Chang, W. Y., Huang, W. C., Chang, Y. J., Chen, C. L., ... & Lee, Y. Y. (2019). Unilateral vs Bilateral Hybrid Approaches for Upper Limb Rehabilitation in Chronic Stroke: A Randomized Controlled Trial. Archives of physical medicine and rehabilitation, 100(12), 2225-2232.
- Hung, J. W., Chou, C. X., Chang, Y. J., Wu, C. Y., Chang, K. C., Wu, W. C., & Howell, S. (2019). Comparison of Kinect2Scratch game-based training and therapist-based training for the improvement of upper extremity functions of patients with chronic stroke: a randomized controlled single-blinded trial. European journal of physical and rehabilitation medicine, 55(5), 542-550.
- Hunter, S. M., Hammett, L., Ball, S., Smith, N., Anderson, C., Clark, A., ... & Pomeroy, V. M. (2011). Dose–response study of mobilisation and tactile stimulation therapy for the upper extremity early after stroke: a phase I trial. Neurorehabilitation and neural repair, 25(4), 314-322.
- Hunter, S. M., Johansen-Berg, H., Ward, N., Kennedy, N. C., Chandler, E., Weir, C. J., ... & Leavey, N. M. (2018). Functional strength training and movement performance therapy for upper limb recovery early poststroke—efficacy, neural correlates, predictive markers, and cost-effectiveness: FAST-INdiCATE Trial. Frontiers in Neurology, 8, 733.
- Huseyinsinoglu, B. E., Ozdincler, A. R., & Krespi, Y. (2012). Bobath Concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial. Clinical rehabilitation, 26(8), 705-715.
- Hwang, C. H., Seong, J. W., & Son, D. S. (2012). Individual finger synchronized robot-assisted hand rehabilitation in subacute to chronic stroke: a prospective randomized clinical trial of efficacy. Clinical Rehabilitation, 26(8), 696-704.
- Ikuno, K., Kawaguchi, S., Kitabeppu, S., Kitaura, M., Tokuhisa, K., Morimoto, S., ... & Shomoto, K. (2012). Effects of peripheral sensory nerve stimulation plus task-oriented training on upper extremity function in patients with subacute stroke: a pilot randomized crossover trial. Clinical rehabilitation, 26(11), 999-1009.
- Ilić, N. V., Dubljanin-Raspopović, E., Nedeljković, U., Tomanović-Vujadinović, S., Milanović, S. D., Petronić-Marković, I., & Ilić, T. V. (2016). Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. Restorative neurology and neuroscience, 34(6), 935-945.
- In, T. S., Jung, K. S., Lee, S. W., & Song, C. H. (2012). Virtual reality reflection therapy improves motor recovery and motor function in the upper extremities of people with chronic stroke. Journal of Physical Therapy Science, 24(4), 339-343.
- Invernizzi, M., Negrini, S., Carda, S., Lanzotti, L., Cisari, C., & Baricich, A. (2013). The value of adding mirror therapy for upper limb motor recovery of subacute stroke patients: a randomized controlled trial. Eur J Phys Rehabil Med, 49(3), 311-7.
- Iruthayarajah, J., McIntyre, A., Cotoi, A., Macaluso, S., & Teasell, R. (2017). The use of virtual reality for balance among individuals with chronic stroke: a systematic review and meta-analysis. Topics in stroke rehabilitation, 24(1), 68-79.

- Iwamuro, B. T., Cruz, E. G., Connelly, L. L., Fischer, H. C., & Kamper, D. G. (2008). Effect of a gravity-compensating orthosis on reaching after stroke: evaluation of the Therapy Assistant WREX. Archives of physical medicine and rehabilitation, 89(11), 2121-2128.
- Jahangir, A. W., Tan, H. J., Norlinah, M. I., Nafisah, W. Y., Ramesh, S., Hamidon, B. B., & Raymond, A. A. (2007). Intramuscular injection of botulinum toxin for the treatment of wrist and finger spasticity after stroke. Medical Journal of Malaysia, 62(4), 319.
- Jan, S., Arsh, A., Darain, H., & Gul, S. (2019). A randomized control trial comparing the effects of motor relearning programme and mirror therapy for improving upper limb motor functions in stroke patients. JPMA, 69(1242).
- Jang, S. H., You, S. H., Hallett, M., Cho, Y. W., Park, C. M., Cho, S. H., ... & Kim, T. H. (2005). Cortical reorganization and associated functional motor recovery after virtual reality in patients with chronic stroke: an experimenter-blind preliminary study. Archives of physical medicine and rehabilitation, 86(11), 2218-2223.
- Jeon, H. J., An, S., Yoo, J., Park, N. H., & Lee, K. H. (2016). The effect of Monkey Chair and Band exercise system on shoulder range of motion and pain in post-stroke patients with hemiplegia. Journal of physical therapy science, 28(8), 2232-2237.
- Jeon, S., Kim, Y., Jung, K., & Chung, Y. (2017). The effects of electromyography-triggered electrical stimulation on shoulder subluxation, muscle activation, pain, and function in persons with stroke: A pilot study. NeuroRehabilitation, 40(1), 69-75.
- Jeyaseelan, K., Lim, K., & Armugam, A. (2008). Neuroprotectants in stroke therapy. Expert Opinion on Pharmacotherapy, 9(6), 887–900. doi:10.1517/14656566.9.6.887
- Ji, S. G., Cha, H. G., & Kim, M. K. (2014). Stroke recovery can be enhanced by using repetitive transcranial magnetic stimulation combined with mirror therapy. Journal of Magnetics, 19(1), 28-31.
- Jin, M., Zhang, Z., Bai, Z., & Fong, K. (2019). Timing-dependent interaction effects of tDCS with mirror therapy on upper extremity motor recovery in patients with chronic stroke: A randomized controlled pilot study. Journal of the neurological sciences, 405, 116436.
- Jing Liu, Weibing Feng, Jun Zhou, Fujing Huang, Liping Long, Yalin Wang, Pengcheng Liu, Xiarong Huang, Mingzhu Yang, Ke Wang, Zhilu Sun. (2020). Effects of sling exercise therapy on balance, mobility, activities of daily living, quality of life and shoulder pain in stroke patients: a randomized controlled trial, European Journal of Integrative Medicine, Volume 35.
- Jongbloed, L., Stacey, S., & Brighton, C. (1989). Stroke rehabilitation: sensorimotor integrative treatment versus functional treatment. The American Journal of Occupational Therapy, 43(6), 391-397.
- Jonsdottir, J., Thorsen, R., Aprile, I., Galeri, S., Spannocchi, G., Beghi, E., ... & Ferrarin, M. (2017). Arm rehabilitation in post stroke subjects: A randomized controlled trial on the efficacy of myoelectrically driven FES applied in a task-oriented approach. PloS one, 12(12), e0188642.
- Jose, A. N. J. U., Wilson, D., George, M. I. N. T. U., Thomas, R. K., & Justin, A. (2017). Comparative study on the beneficial effects of telmisartan and other antihypertensive agents in stroke patients. Int J Pharm Pharm Sci, 9(2), 99-102.

- Jun, E. M., Roh, Y. H., & Kim, M. J. (2013). The effect of music-movement therapy on physical and psychological states of stroke patients. Journal of clinical nursing, 22(1-2), 22-31.
- Jung, H. T., Kim, H., Jeong, J., Jeon, B., Ryu, T., & Kim, Y. (2017, July). Feasibility of using the RAPAEL Smart Glove in upper limb physical therapy for patients after stroke: A randomized controlled trial. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 3856-3859). IEEE.
- Jung, K. M., & Choi, J. D. (2019). The Effects of Active Shoulder Exercise with a Sling Suspension System on Shoulder Subluxation, Proprioception, and Upper Extremity Function in Patients with Acute Stroke. Medical science monitor: international medical journal of experimental and clinical research, 25, 4849.
- Jung, K., Jung, J., In, T., Kim, T., & Cho, H. Y. (2017). The influence of Task-Related Training combined with Transcutaneous Electrical Nerve Stimulation on paretic upper limb muscle activation in patients with chronic stroke. NeuroRehabilitation, 40(3), 315-323.
- Jung, Y. J., Hong, J. H., Kwon, H. G., Song, J. C., Kim, C., Park, S., ... & Jang, S. H. (2011). The effect of a stretching device on hand spasticity in chronic hemiparetic stroke patients. NeuroRehabilitation, 29(1), 53-59.
- Junior, V. A. D. S., Santos, M. D. S., Ribeiro, N. M. D. S., & Maldonado, I. L. (2019). Combining proprioceptive neuromuscular facilitation and virtual reality for improving sensorimotor function in stroke survivors: a randomized clinical trial. Journal of central nervous system disease, 11, 1179573519863826.
- Kahn, L. E., Zygman, M. L., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. Journal of neuroengineering and rehabilitation, 3(1), 12.
- Kaji, R., Osako, Y., Suyama, K., Maeda, T., Uechi, Y., Iwasaki, M., & GSK1358820 Spasticity Study Group. (2010). Botulinum toxin type A in post-stroke upper limb spasticity. Current medical research and opinion, 26(8), 1983-1992.
- Kamal Narayan Arya, Shanta Pandian, Abhishek Sharma, Vikas Kumar & Varun Kumar Kashyap (2020) Interlimb coupling in poststroke rehabilitation: a pilot randomized controlled trial, Topics in Stroke Rehabilitation, 27:4, 272-289, DOI: 10.1080/10749357.2019.1682368
- Kamal Narayan Arya, Shanta Pandian, Abhishek Sharma, Vikas Kumar & Varun Kumar Kashyap (2020) Interlimb coupling in poststroke rehabilitation: a pilot randomized controlled trial, Topics in Stroke Rehabilitation, 27:4, 272-289.
- Kang, H. S., Sok, S. R., & Kang, J. S. (2009). Effects of Meridian acupressure for stroke patients in Korea. Journal of clinical nursing, 18(15), 2145-2152.
- Kanovský, P., Slawek, J., Denes, Z., Platz, T., Sassin, I., Comes, G., & Grafe, S. (2009). Efficacy and safety of botulinum neurotoxin NT 201 in poststroke upper limb spasticity. Clinical neuropharmacology, 32(5), 259-265.
- Karaahmet, O. Z., Gurcay, E., Unal, Z. K., Cankurtaran, D., & Cakci, A. (2019). Effects of functional electrical stimulation-cycling on shoulder pain and subluxation in patients with acute-subacute stroke: a pilot study. International journal of rehabilitation research. Internationale

- Zeitschrift fur Rehabilitationsforschung. Revue internationale de recherches de readaptation, 42(1), 36–40.
- Karakus, D., Ersoz, M., Koyuncu, G., Turk, D., Sasmaz, F. M., & Akyuz, M. (2013). Effects of functional electrical stimulation on wrist function and spasticity in stroke: a randomized controlled study/Inmede fonksiyonel elektrik stimulasyonunun el bilegi fonksiyonlari ve spastisiteye etkisi: randomize kontrollu bir calisma. Turkish Journal of Physical Medicine and Rehabilitation, 59(2), 97-103.
- Kasashima, Y., Fujiwara, T., Matsushika, Y., Tsuji, T., Hase, K., Ushiyama, J., Ushiba, J., & Liu, M. (2012). Modulation of event-related desynchronization during motor imagery with transcranial direct current stimulation (tDCS) in patients with chronic hemiparetic stroke. Experimental brain research, 221(3), 263–268.
- Kattenstroth, J. C., Kalisch, T., Kowalewski, R., Tegenthoff, M., & Dinse, H. R. (2013). Quantitative assessment of joint position sense recovery in subacute stroke patients: a pilot study. Journal of rehabilitation medicine, 45(10), 1004-1009.
- Kattenstroth, J. C., Kalisch, T., Sczesny-Kaiser, M., Greulich, W., Tegenthoff, M., & Dinse, H. R. (2018). Daily repetitive sensory stimulation of the paretic hand for the treatment of sensorimotor deficits in patients with subacute stroke: RESET, a randomized, sham-controlled trial. BMC neurology, 18(1), 2.
- Khallaf, M. E., Ameer, M. A., & Fayed, E. E. (2017). Effect of task specific training and wrist-fingers extension splint on hand joints range of motion and function after stroke. NeuroRehabilitation, 41(2), 437–444.
- Khan, C. M., Oesch, P. R., Gamper, U. N., Kool, J. P., & Beer, S. (2011). Potential effectiveness of three different treatment approaches to improve minimal to moderate arm and hand function after stroke—a pilot randomized clinical trial. Clinical rehabilitation, 25(11), 1032-1041.
- Khan, F., Rathore, C., Kate, M., Joy, J., Zachariah, G., Vincent, P. C., Varma, R. P., & Radhakrishnan, K. (2019). The comparative efficacy of theta burst stimulation or functional electrical stimulation when combined with physical therapy after stroke: a randomized controlled trial. Clinical rehabilitation, 33(4), 693–703.
- Khedr, E. M., Abdel-Fadeil, M. R., Farghali, A., & Qaid, M. (2009). Role of 1 and 3 Hz repetitive transcranial magnetic stimulation on motor function recovery after acute ischaemic stroke. European journal of neurology, 16(12), 1323-1330.
- Khedr, E. M., Ahmed, M. A., Fathy, N., & Rothwell, J. C. (2005). Therapeutic trial of repetitive transcranial magnetic stimulation after acute ischemic stroke. Neurology, 65(3), 466-468.
- Khedr, E. M., Etraby, A. E., Hemeda, M., Nasef, A. M., & Razek, A. A. E. (2010). Long-term effect of repetitive transcranial magnetic stimulation on motor function recovery after acute ischemic stroke. Acta Neurologica Scandinavica, 121(1), 30-37.
- Khedr, E. M., Shawky, O. A., El-Hammady, D. H., Rothwell, J. C., Darwish, E. S., Mostafa, O. M., & Tohamy, A. M. (2013). Effect of anodal versus cathodal transcranial direct current stimulation on stroke rehabilitation: a pilot randomized controlled trial. Neurorehabilitation and neural repair, 27(7), 592-601.

- Kim, C. Y., Lee, J. S., Lee, J. H., Kim, Y. G., Shin, A. R., Shim, Y. H., & Ha, H. K. (2015). Effect of spatial target reaching training based on visual biofeedback on the upper extremity function of hemiplegic stroke patients. Journal of physical therapy science, 27(4), 1091-1096.
- Kim, D. H., Shin, J. C., Jung, S., Jung, T. M., & Kim, D. Y. (2015). Effects of intermittent theta burst stimulation on spasticity after stroke. Neuroreport, 26(10), 561.
- Kim, D. Y., Lim, J. Y., Kang, E. K., You, D. S., Oh, M. K., Oh, B. M., & Paik, N. J. (2010). Effect of transcranial direct current stimulation on motor recovery in patients with subacute stroke. American journal of physical medicine & rehabilitation, 89(11), 879-886.
- Kim, D. Y., Ohn, S. H., Yang, E. J., Park, C. I., & Jung, K. J. (2009). Enhancing motor performance by anodal transcranial direct current stimulation in subacute stroke patients. American journal of physical medicine & rehabilitation, 88(10), 829-836.
- Kim, E. B., & Kim, Y. D. (2015). Effects of kinesiology taping on the upper-extremity function and activities of daily living in patients with hemiplegia. *Journal of physical therapy science*, *27*(5), 1455-1457.
- Kim, E. H., Jang, M. C., Seo, J. P., Jang, S. H., Song, J. C., & Jo, H. M. (2013). The effect of a hand-stretching device during the management of spasticity in chronic hemiparetic stroke patients. Annals of Rehabilitation Medicine, 37(2), 235-240.
- Kim, E., & Kim, K. (2015). Effect of purposeful action observation on upper extremity function in stroke patients. Journal of physical therapy science, 27(9), 2867-2869.
- Kim, G. J., Hinojosa, J., Rao, A. K., Batavia, M., & O'Dell, M. W. (2017). Randomized trial on the effects of attentional focus on motor training of the upper extremity using robotics with individuals after chronic stroke. Archives of physical medicine and rehabilitation, 98(10), 1924-1931.
- Kim, G. J., Hinojosa, J., Rao, A. K., Batavia, M., & O'Dell, M. W. (2017). Randomized trial on the effects of attentional focus on motor training of the upper extremity using robotics with individuals after chronic stroke. *Archives of physical medicine and rehabilitation*, *98*(10), 1924-1931.
- Kim, H. N., Song, B. K., Han, S. Y., & Jeong, J. W. (2020). The Effect of Action Observation Training Combined with Intrinsic Muscle Stimulation on the Upper Limb of Function in Stroke Patients. Medico Legal Update, 20(1), 1750-1754.
- Kim, H., Yoo, E. Y., Jung, M. Y., Kim, J., Park, J. H., & Kang, D. H. (2018). The effects of mental practice combined with modified constraint-induced therapy on corticospinal excitability, movement quality, function, and activities of daily living in persons with stroke. Disability and rehabilitation, 40(20), 2449–2457.
- Kim, J. H., & Lee, B. H. (2015). Mirror therapy combined with biofeedback functional electrical stimulation for motor recovery of upper extremities after stroke: a pilot randomized controlled trial. Occupational therapy international, 22(2), 51-60.
- Kim, J. O., Lee, J., & Lee, B. H. (2017). Effect of scapular stabilization exercise during standing on upper limb function and gait ability of stroke patients. Journal of neurosciences in rural practice, 8(4), 540.

- Kim, J., & Yim, J. (2017). Effects of an Exercise Protocol for Improving Handgrip Strength and Walking Speed on Cognitive Function in Patients with Chronic Stroke. Medical science monitor: international medical journal of experimental and clinical research, 23, 5402.
- Kim, K., Lee, S., Kim, D., Lee, K., & Kim, Y. (2016). Effects of mirror therapy combined with motor tasks on upper extremity function and activities daily living of stroke patients. Journal of physical therapy science, 28(2), 483-487.
- Kim, M. K. (2014). Repetitive Transcranial Magnetic Stimulation Combined with Task Oriented Training to Improve Upper Extremity Function After Stroke. Journal of Magnetics, 19(2), 170-173.
- Kim, M. S., Kim, S. H., Noh, S. E., Bang, H. J., & Lee, K. M. (2019). Robotic-Assisted Shoulder Rehabilitation Therapy Effectively Improved Poststroke Hemiplegic Shoulder Pain: A Randomized Controlled Trial. Archives of physical medicine and rehabilitation, 100(6), 1015–1022.
- Kim, S. H., & Park, J. H. (2019). The Effect of Occupation-Based Bilateral Upper Extremity Training in a Medical Setting for Stroke Patients: A Single-Blinded, Pilot Randomized Controlled Trial. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association, 28(12), 104335.
- Kim, S. H., Park, J. H., Jung, M. Y., & Yoo, E. Y. (2016). Effects of Task-Oriented Training as an Added Treatment to Electromyogram-Triggered Neuromuscular Stimulation on Upper Extremity Function in Chronic Stroke Patients. Occupational therapy international, 23(2), 165-174.
- Kim, T. H., In, T. S., & Cho, H. Y. (2013). Task-related training combined with transcutaneous electrical nerve stimulation promotes upper limb functions in patients with chronic stroke. The Tohoku journal of experimental medicine, 231(2), 93-100.
- Kim, W. S., Cho, S., Park, S. H., Lee, J. Y., Kwon, S., & Paik, N. J. (2018). A low cost kinect-based virtual rehabilitation system for inpatient rehabilitation of the upper limb in patients with subacute stroke: A randomized, double-blind, sham-controlled pilot trial. Medicine, 97(25).
- Kimberley, T. J., Lewis, S. M., Auerbach, E. J., Dorsey, L. L., Lojovich, J. M., & Carey, J. R. (2004). Electrical stimulation driving functional improvements and cortical changes in subjects with stroke. Experimental Brain Research, 154(4), 450-460
- Kimberley, T. J., Pierce, D., Prudente, C. N., Francisco, G. E., Yozbatiran, N., Smith, P., ... & Wigginton, J. G. (2018). Vagus nerve stimulation paired with upper limb rehabilitation after chronic stroke: a blinded randomized pilot study. Stroke, 49(11), 2789-2792.
- King, T. I. (1996). The effect of neuromuscular electrical stimulation in reducing tone. The American journal of occupational therapy: official publication of the American Occupational Therapy Association, 50(1), 62.
- Kiper, P., Agostini, M., Luque-Moreno, C., Tonin, P., & Turolla, A. (2014). Reinforced feedback in virtual environment for rehabilitation of upper extremity dysfunction after stroke: preliminary data from a randomized controlled trial. BioMed research international, 2014.

- Kiper, P., Piron, L., Turolla, A., Stożek, J., & Tonin, P. (2011). The effectiveness of reinforced feedback in virtual environment in the first 12 months after stroke. Neurologia i neurochirurgia polska, 45(5), 436-444.
- Kiper, P., Szczudlik, A., Agostini, M., Opara, J., Nowobilski, R., Ventura, L., ... & Turolla, A. (2018). Virtual reality for upper limb rehabilitation in subacute and chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 99(5), 834-842.
- Kirac-Unal, Z., Gencay-Can, A., Karaca-Umay, E., & Cakci, F. A. (2019). The effect of task-oriented electromyography-triggered electrical stimulation of the paretic wrist extensors on upper limb motor function early after stroke: a pilot randomized controlled trial. International Journal of Rehabilitation Research, 42(1), 74-81.
- Kjendahl, A., Säliström, S., Østen, P. E., Stanghelle, J. K., & Borchgrevink, C. F. (1997). A one year follow-up study on the effects of acupuncture in the treatment of stroke patients in the subacute stage: a randomized, controlled study. Clinical Rehabilitation, 11(3), 192-200.
- Klaiput, A., & Kitisomprayoonkul, W. (2009). Increased pinch strength in acute and subacute stroke patients after simultaneous median and ulnar sensory stimulation. Neurorehabilitation and neural repair, 23(4), 351-356.
- Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., ... & Luft, A. (2014). Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. The Lancet Neurology, 13(2), 159-166.
- Klomjai, W., Aneksan, B., Pheungphrarattanatrai, A., Chantanachai, T., Choowong, N., Bunleukhet, S., ... & Hiengkaew, V. (2018). Effect of single-session dual-tDCS before physical therapy on lower-limb performance in sub-acute stroke patients: a randomized sham-controlled crossover study. Annals of physical and rehabilitation medicine, 61(5), 286-291.
- Knutson, J. S., Harley, M. Y., Hisel, T. Z., & Chae, J. (2007). Improving hand function in stroke survivors: a pilot study of contralaterally controlled functional electric stimulation in chronic hemiplegia. Archives of physical medicine and rehabilitation, 88(4), 513-520.
- Knutson, J. S., Harley, M. Y., Hisel, T. Z., Hogan, S. D., Maloney, M. M., & Chae, J. (2012). Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients. Neurorehabilitation and neural repair, 26(3), 239-246.
- Knutson, J. S., Makowski, N. S., Harley, M. Y., Hisel, T. Z., Gunzler, D. D., Wilson, R. D., & Chae, J. (2020). Adding Contralaterally Controlled Electrical Stimulation of the Triceps to Contralaterally Controlled Functional Electrical Stimulation of the Finger Extensors Reduces Upper Limb Impairment and Improves Reachable Workspace but not Dexterity: A Randomized Controlled Trial. American Journal of Physical Medicine & Rehabilitation, 99(6), 514-521.
- Koh, C. L., Lin, J. H., Jeng, J. S., Huang, S. L., & Hsieh, C. L. (2017). Effects of Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: A randomized controlled trial. Archives of physical medicine and rehabilitation, 98(12), 2477-2484.
- Kojima, K., Ikuno, K., Morii, Y., Tokuhisa, K., Morimoto, S., & Shomoto, K. (2014). Feasibility study of a combined treatment of electromyography-triggered neuromuscular stimulation and

mirror therapy in stroke patients: a randomized crossover trial. NeuroRehabilitation, 34(2), 235-244.

Kojima, K., Ikuno, K., Morii, Y., Tokuhisa, K., Morimoto, S., & Shomoto, K. (2014). Feasibility study of a combined treatment of electromyography-triggered neuromuscular stimulation and mirror therapy in stroke patients: a randomized crossover trial. NeuroRehabilitation, 34(2), 235–244.

Kollen, B. J., Lennon, S., Lyons, B., Wheatley-Smith, L., Scheper, M., Buurke, J. H., ... & Kwakkel, G. (2009). The effectiveness of the Bobath concept in stroke rehabilitation: What is the evidence?

Kong, K. H., Loh, Y. J., Thia, E., Chai, A., Ng, C. Y., Soh, Y. M., ... & Tjan, S. Y. (2016). Efficacy of a virtual reality commercial gaming device in upper limb recovery after stroke: a randomized, controlled study. Topics in stroke rehabilitation, 23(5), 333-340.

Kowalczewski, J., Gritsenko, V., Ashworth, N., Ellaway, P., & Prochazka, A. (2007). Upper-extremity functional electric stimulation—assisted exercises on a workstation in the subacute phase of stroke recovery. Archives of physical medicine and rehabilitation, 88(7), 833-839.

Krasny-Pacini, A., Evans, J., Sohlberg, M. M., & Chevignard, M. (2016). Proposed criteria for appraising goal attainment scales used as outcome measures in rehabilitation research. Archives of Physical Medicine and Rehabilitation, 97(1), 157-170.

Krebs, H. I., Palazzolo, J. J., Dipietro, L., Ferraro, M., Krol, J., Rannekleiv, K., ... & Hogan, N. (2003). Rehabilitation robotics: Performance-based progressive robot-assisted therapy. Autonomous robots, 15(1), 7-20.

Krewer, C., Hartl, S., Müller, F., & Koenig, E. (2014). Effects of repetitive peripheral magnetic stimulation on upper-limb spasticity and impairment in patients with spastic hemiparesis: a randomized, double-blind, sham-controlled study. Archives of physical medicine and rehabilitation, 95(6), 1039-1047.

Kristensen, O. H., Stenager, E., & Dalgas, U. (2017). Muscle strength and poststroke hemiplegia: a systematic review of muscle strength assessment and muscle strength impairment. Archives of physical medicine and rehabilitation, 98(2), 368-380.

Kuk, E. J., Kim, J. M., Oh, D. W., & Hwang, H. J. (2016). Effects of action observation therapy on hand dexterity and EEG-based cortical activation patterns in patients with post-stroke hemiparesis. Topics in stroke rehabilitation, 23(5), 318-325.

Kutner, N. G., Zhang, R., Butler, A. J., Wolf, S. L., & Alberts, J. L. (2010). Quality-of-life change associated with robotic-assisted therapy to improve hand motor function in patients with subacute stroke: a randomized clinical trial. Physical therapy, 90(4), 493-504.

Kwakkel, G., Winters, C., Van Wegen, E. E., Nijland, R. H., Van Kuijk, A. A., Visser-Meily, A., ... & Meskers, C. G. (2016). Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: the EXPLICIT-stroke randomized clinical trial. Neurorehabilitation and neural repair, 30(9), 804-816.

- Kwon, T. G., Kim, Y. H., Chang, W. H., Bang, O. Y., & Shin, Y. I. (2014). Effective method of combining rTMS and motor training in stroke patients. Restorative Neurology and Neuroscience, 32(2), 223-232.
- Laffont, I., Froger, J., Jourdan, C., Bakhti, K., van Dokkum, L. E., Gouaich, A., ... & Le Bars, E. (2020). Rehabilitation of the upper arm early after stroke: Video games versus conventional rehabilitation. A randomized controlled trial. Annals of physical and rehabilitation medicine, 63(3), 173-180.
- Lam, K., Lau, K. K., So, K. K., Tam, C. K., Wu, Y. M., Cheung, G., ... & Leung, C. (2012). Can botulinum toxin decrease carer burden in long term care residents with upper limb spasticity? A randomized controlled study. Journal of the American Medical Directors Association, 13(5), 477-484.
- Lam, T. K., Dawson, D. R., Honjo, K., Ross, B., Binns, M. A., Stuss, D. T., ... & Chen, J. L. (2018). Neural coupling between contralesional motor and frontoparietal networks correlates with motor ability in individuals with chronic stroke. Journal of the neurological sciences, 384, 21-29.
- Lang, C. E., Strube, M. J., Bland, M. D., Waddell, K. J., Cherry-Allen, K. M., Nudo, R. J., ... & Birkenmeier, R. L. (2016). Dose response of task-specific upper limb training in people at least 6 months poststroke: A phase II, single-blind, randomized, controlled trial. Annals of neurology, 80(3), 342-354.
- Langhammer, B., & Stanghelle, J. K. (2011). Can physiotherapy after stroke based on the Bobath concept result in improved quality of movement compared to the motor relearning programme. Physiotherapy Research International, 16(2), 69-80.
- Langlois, S., Pederson, L., & MacKinnon, J. R. (1991). The Effects of Splinting on the Spastic Hemiplegic is Hand: Report of a Feasibility Study. Canadian Journal of Occupational Therapy, 58(1), 17-25.
- Lannin, N. A., Cusick, A., Hills, C., Kinnear, B., Vogel, K., Matthews, K., & Bowring, G. (2016). Upper limb motor training using a Saebo™ orthosis is feasible for increasing task-specific practice in hospital after stroke. Australian occupational therapy journal, 63(6), 364-372.
- Lannin, N. A., Cusick, A., McCluskey, A., & Herbert, R. D. (2007). Effects of splinting on wrist contracture after stroke: a randomized controlled trial. Stroke, 38(1), 111-116.
- Lannin, N. A., Horsley, S. A., Herbert, R., McCluskey, A., & Cusick, A. (2003). Splinting the hand in the functional position after brain impairment: a randomized, controlled trial. Archives of physical medicine and rehabilitation, 84(2), 297-302.
- Laver, K. E., Lange, B., George, S., Deutsch, J. E., Saposnik, G., & Crotty, M. (2017). Virtual reality for stroke rehabilitation. Cochrane database of systematic reviews, (11).
- Law, L. L., Fong, K. N., & Li, R. K. (2018). Multisensory stimulation to promote upper extremity motor recovery in stroke: A pilot study. British journal of occupational therapy, 81(11), 641-648.
- Lee, D. G., & Lee, D. Y. (2015). Effects of adjustment of transcranial direct current stimulation on motor function of the upper extremity in stroke patients. Journal of physical therapy science, 27(11), 3511-3513.

- Lee, D., Lee, M., Lee, K., & Song, C. (2014). Asymmetric training using virtual reality reflection equipment and the enhancement of upper limb function in stroke patients: a randomized controlled trial. Journal of stroke and cerebrovascular diseases, 23(6), 1319-1326.
- Lee, D., Roh, H., Park, J., Lee, S., & Han, S. (2013). Drinking behavior training for stroke patients using action observation and practice of upper limb function. J Phys Ther Sci, 25(5), 611-614.
- Lee, H. S., Lim, J. H., Jeon, B. H., & Song, C. S. (2020). Non-immersive Virtual Reality Rehabilitation Applied to a Task-oriented Approach for Stroke Patients: A Randomized Controlled Trial. Restorative Neurology and Neuroscience, (Preprint), 1-8.
- Lee, J. S., Kim, C. Y., & Kim, H. D. (2016). Short-term effects of whole-body vibration combined with task-related training on upper extremity function, spasticity, and grip strength in subjects with poststroke hemiplegia: A pilot randomized controlled trial. American journal of physical medicine & rehabilitation, 95(8), 608-617.
- Lee, K. W., Kim, S. B., Lee, J. H., Lee, S. J., & Yoo, S. W. (2016). Effect of upper extremity robot-assisted exercise on spasticity in stroke patients. Annals of rehabilitation medicine, 40(6), 961.
- Lee, M. J., Lee, J. H., & Lee, S. M. (2018). Effects of robot-assisted therapy on upper extremity function and activities of daily living in hemiplegic patients: A single-blinded, randomized, controlled trial. Technology and Health Care, 26(4), 659-666.
- Lee, M. J., Lee, J. H., Koo, H. M., & Lee, S. M. (2017). Effectiveness of bilateral arm training for improving extremity function and activities of daily living performance in hemiplegic patients. Journal of Stroke and Cerebrovascular Diseases, 26(5), 1020-1025.
- Lee, M. M., Cho, H. Y., & Song, C. H. (2012). The mirror therapy program enhances upper-limb motor recovery and motor function in acute stroke patients. American journal of physical medicine & rehabilitation, 91(8), 689-700.
- Lee, M. M., Lee, K. J., & Song, C. H. (2018). Game-based virtual reality canoe paddling training to improve postural balance and upper extremity function: A preliminary randomized controlled study of 30 patients with subacute stroke. Medical science monitor: international medical journal of experimental and clinical research, 24, 2590.
- Lee, M. M., Shin, D. C., & Song, C. H. (2016). Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study. Journal of physical therapy science, 28(7), 2019-2024.
- Lee, M., Son, J., Kim, J., Pyun, S. B., Eun, S. D., & Yoon, B. (2016). Comparison of individualized virtual reality-and group-based rehabilitation in older adults with chronic stroke in community settings: a pilot randomized controlled trial. European Journal of Integrative Medicine, 8(5), 738-746.
- Lee, S. H., Park, G., Cho, D. Y., Kim, H. Y., Lee, J. Y., Kim, S., ... & Shin, J. H. (2020). Comparisons between end-effector and exoskeleton rehabilitation robots regarding upper

- extremity function among chronic stroke patients with moderate-to-severe upper limb impairment. Scientific reports, 10(1), 1-8.
- Lee, S. J., & Chun, M. H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Archives of physical medicine and rehabilitation, 95(3), 431-438.
- Lee, S. J., & Chun, M. H. (2014). Combination transcranial direct current stimulation and virtual reality therapy for upper extremity training in patients with subacute stroke. Archives of physical medicine and rehabilitation, 95(3), 431-438.
- Lee, S., Kim, Y., & Lee, B. H. (2016). Effect of Virtual Reality-based Bilateral Upper Extremity Training on Upper Extremity Function after Stroke: A Randomized Controlled Clinical Trial. Occupational therapy international, 23(4), 357-368.
- Lee, Y. Y., Lin, K. C., Cheng, H. J., Wu, C. Y., Hsieh, Y. W., & Chen, C. K. (2015). Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in patients with chronic stroke: a double-blinded randomized controlled trial. Journal of neuroengineering and rehabilitation, 12(1), 96.
- Lee, Y. Y., Lin, K. C., Wu, C. Y., Liao, C. H., Lin, J. C., & Chen, C. L. (2015). Combining afferent stimulation and mirror therapy for improving muscular, sensorimotor, and daily functions after chronic stroke: A randomized, placebo-controlled study. American journal of physical medicine & rehabilitation, 94(10S), 859-868.
- Lefebvre, S., Dricot, L., Laloux, P., Gradkowski, W., Desfontaines, P., Evrard, F., ... & Vandermeeren, Y. (2014). Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain, 138(1), 149-163.
- Lefebvre, S., Laloux, P., Peeters, A., Desfontaines, P., Jamart, J., & Vandermeeren, Y. (2013). Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients. Frontiers in human neuroscience, 6, 343.
- Lefebvre, S., Thonnard, J. L., Laloux, P., Peeters, A., Jamart, J., & Vandermeeren, Y. (2014). Single session of dual-tDCS transiently improves precision grip and dexterity of the paretic hand after stroke. Neurorehabilitation and Neural Repair, 28(2), 100-110.
- Lemmens, R. J., Timmermans, A. A., Janssen-Potten, Y. J., Pulles, S. A., Geers, R. P., Bakx, W. G., ... & Seelen, H. A. (2014). Accelerometry measuring the outcome of robot-supported upper limb training in chronic stroke: a randomized controlled trial. PloS one, 9(5), e96414.
- Letswaart, M., Johnston, M., Dijkerman, H. C., Joice, S., Scott, C. L., MacWalter, R. S., & Hamilton, S. J. (2011). Mental practice with motor imagery in stroke recovery: randomized controlled trial of efficacy. Brain, 134(5), 1373-1386.
- Levy, R. M., Harvey, R. L., Kissela, B. M., Winstein, C. J., Lutsep, H. L., Parrish, T. B., ... & Venkatesan, L. (2016). Epidural electrical stimulation for stroke rehabilitation: results of the prospective, multicenter, randomized, single-blinded everest trial. Neurorehabilitation and neural repair, 30(2), 107-119.

- Levy, R., Ruland, S., Weinand, M., Lowry, D., Dafer, R., & Bakay, R. (2008). Cortical stimulation for the rehabilitation of patients with hemiparetic stroke: a multicenter feasibility study of safety and efficacy. Journal of neurosurgery, 108(4), 707-714.
- Li, F., Wu, Y., & Li, X. (2014b). Test-retest reliability and inter-rater reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in hemiplegic patients with stroke. Eur J Phys Rehabil Med, 50(1), 9-15.
- Li, F., Zhang, T., Li, B. J., Zhang, W., Zhao, J., & Song, L. P. (2018). Motor imagery training induces changes in brain neural networks in stroke patients. Neural regeneration research, 13(10), 1771.
- Li, G., Yuan, W., Liu, G., Qiao, L., Zhang, Y., Wang, Y., ... & Wang, J. (2020). Effects of radial extracorporeal shockwave therapy on spasticity of upper-limb agonist/antagonist muscles in patients affected by stroke: a randomized, single-blind clinical trial. Age and Ageing, 49(2), 246-252.
- Li, G., Yuan, W., Liu, G., Qiao, L., Zhang, Y., Wang, Y., Wang, W., Zhao, M., Wang, Y., & Wang, J. (2020). Effects of radial extracorporeal shockwave therapy on spasticity of upper-limb agonist/antagonist muscles in patients affected by stroke: a randomized, single-blind clinical trial. Age and ageing, 49(2), 246–252.
- Li, J., Meng, X. M., Li, R. Y., Zhang, R., Zhang, Z., & Du, Y. F. (2016). Effects of different frequencies of repetitive transcranial magnetic stimulation on the recovery of upper limb motor dysfunction in patients with subacute cerebral infarction. Neural regeneration research, 11(10), 1584.
- Li, M., Liu, Y., Wu, Y., Liu, S., Jia, J., & Zhang, L. (2014). Neurophysiological substrates of stroke patients with motor imagery-based brain-computer interface training. International Journal of Neuroscience, 124(6), 403-415.
- Li, N., Tian, F., Wang, C., Yu, P., Zhou, X., Wen, Q., ... & Huang, L. (2012). Therapeutic effect of acupuncture and massage for shoulder-hand syndrome in hemiplegia patients: a clinical two-center randomized controlled trial. Journal of Traditional Chinese Medicine, 32(3), 343-349.
- Li, Q., Tian, F. L., Liu, G. R., Zheng, D. S., Chen, J. M., Ma, S. R., ... & Li, X. Q. (2014). Impact on the gait time cycle of ischemic stroke in the treatment with yin-yang respiratory reinforcing and reducing needling technique. Zhongguo zhen jiu= Chinese acupuncture & moxibustion, 34(3), 237-240.
- Li, Y. C., Wu, C. Y., Hsieh, Y. W., Lin, K. C., Yao, G., Chen, C. L., & Lee, Y. Y. (2019). The Priming Effects of Mirror Visual Feedback on Bilateral Task Practice: A Randomized Controlled Study. Occupational Therapy International, 2019.
- Li, Y., Liang, K., Zhang, L., Hu, Y., Ge, Y., & Zhao, J. (2018). Upper limb ischemic postconditioning as adjunct therapy in acute stroke patients: a randomized pilot. Journal of Stroke and Cerebrovascular Diseases, 27(11), 3328-3335.
- Liao, L. R., Ng, G. Y., Jones, A. Y., Chung, R. C., & Pang, M. Y. (2015). Effects of vibration intensity, exercise, and motor impairment on leg muscle activity induced by whole-body vibration in people with stroke. Physical therapy, 95(12), 1617-1627.

- Liao, W. W., Wu, C. Y., Hsieh, Y. W., Lin, K. C., & Chang, W. Y. (2012). Effects of robot-assisted upper limb rehabilitation on daily function and real-world arm activity in patients with chronic stroke: a randomized controlled trial. *Clinical Rehabilitation*, 26(2), 111-120.
- Liepert, J., Zittel, S., & Weiller, C. (2007). Improvement of dexterity by single session low-frequency repetitive transcranial magnetic stimulation over the contralesional motor cortex in acute stroke: a double-blind placebo-controlled crossover trial. Restorative neurology and neuroscience, 25(5, 6), 461-465.
- Lim, K. B., Lee, H. J., Yoo, J., Yun, H. J., & Hwang, H. J. (2016). Efficacy of mirror therapy containing functional tasks in poststroke patients. Annals of rehabilitation medicine, 40(4), 629.
- Lima, R. C. M., Michaelsen, S. M., Nascimento, L. R., Polese, J. C., Pereira, N. D., & Teixeira-Salmela, L. F. (2014). Addition of trunk restraint to home-based modified constraint-induced movement therapy does not bring additional benefits in chronic stroke individuals with mild and moderate upper limb impairments: A pilot randomized controlled trial. NeuroRehabilitation, 35(3), 391-404.
- Lin, C. H., Chou, L. W., Luo, H. J., Tsai, P. Y., Lieu, F. K., Chiang, S. L., & Sung, W. H. (2015). Effects of computer-aided interlimb force coupling training on paretic hand and arm motor control following chronic stroke: a randomized controlled trial. PloS one, 10(7), e0131048.
- Lin, C. H., Chou, L. W., Luo, H. J., Tsai, P. Y., Lieu, F. K., Chiang, S. L., & Sung, W. H. (2015). Effects of Computer-Aided Interlimb Force Coupling Training on Paretic Hand and Arm Motor Control following Chronic Stroke: A Randomized Controlled Trial. PloS one, 10(7), e0131048.
- Lin, K. C., Chen, Y. A., Chen, C. L., Wu, C. Y., & Chang, Y. F. (2010). The effects of bilateral arm training on motor control and functional performance in chronic stroke: a randomized controlled study. Neurorehabilitation and neural repair, 24(1), 42-51.
- Lin, K. C., Chen, Y. T., Huang, P. C., Wu, C. Y., Huang, W. L., Yang, H. W., ... & Lu, H. J. (2014). Effect of mirror therapy combined with somatosensory stimulation on motor recovery and daily function in stroke patients: A pilot study. Journal of the Formosan Medical Association, 113(7), 422-428.
- Lin, K. C., Chung, H. Y., Wu, C. Y., Liu, H. L., Hsieh, Y. W., Chen, I. H., ... & Wai, Y. Y. (2010). Constraint-induced therapy versus control intervention in patients with stroke: a functional magnetic resonance imaging study. American journal of physical medicine & rehabilitation, 89(3), 177-185.
- Lin, K. C., Huang, P. C., Chen, Y. T., Wu, C. Y., & Huang, W. L. (2014). Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabilitation and neural repair, 28(2), 153-162.
- Lin, K. C., Wu, C. Y., & Liu, J. S. (2008). A randomized controlled trial of constraint-induced movement therapy after stroke. In Reconstructive Neurosurgery (pp. 61-64). Springer, Vienna.
- Lin, K. C., Wu, C. Y., Liu, J. S., Chen, Y. T., & Hsu, C. J. (2009). Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke. Neurorehabilitation and Neural Repair, 23(2), 160-165.

- Lin, K. C., Wu, C. Y., Wei, T. H., Gung, C., Lee, C. Y., & Liu, J. S. (2007). Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study. *Clinical Rehabilitation*, *21*(12), 1075-1086.
- Lin, R. C., Chiang, S. L., Heitkemper, M. M., Weng, S. M., Lin, C. F., Yang, F. C., & Lin, C. H. (2020). Effectiveness of Early Rehabilitation Combined With Virtual Reality Training on Muscle Strength, Mood State, and Functional Status in Patients With Acute Stroke: A Randomized Controlled Trial. Worldviews on Evidence Based Nursing, 17(2), 158-167.
- Lin, S. P., Long, Y. M., & Chen, X. H. (2015). The effects of statins on infections after stroke or transient ischemic attack: a meta-analysis. PloS one, 10(7), e0130071.
- Lin, Z., & Yan, T. (2011). Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. Journal of rehabilitation medicine, 43(6), 506-510.
- Linacre, J. M., Heinemann, A. W., Wright, B. D., Granger, C. V., & Hamilton, B. B. (1994). The structure and stability of the Functional Independence Measure. Archives of physical medicine and rehabilitation, 75(2), 127-132.
- Lindenberg, R., Renga, V., Zhu, L. L., Nair, D., & Schlaug, G. M. D. P. (2010). Bihemispheric brain stimulation facilitates motor recovery in chronic stroke patients. Neurology, 75(24), 2176-2184.
- Linder, S. M., Rosenfeldt, A. B., Bay, R. C., Sahu, K., Wolf, S. L., & Alberts, J. L. (2015). Improving quality of life and depression after stroke through telerehabilitation. American Journal of Occupational Therapy, 69(2), 6902290020p1-6902290020p10.
- Linder, S. M., Rosenfeldt, A. B., Davidson, S., Zimmerman, N., Penko, A., Lee, J., ... & Alberts, J. L. (2019). Forced, not voluntary, aerobic exercise enhances motor recovery in persons with chronic stroke. Neurorehabilitation and neural repair, 33(8), 681-690.
- Linder, S. M., Rosenfeldt, A. B., Dey, T., & Alberts, J. L. (2017). Forced aerobic exercise preceding task practice improves motor recovery poststroke. American Journal of Occupational Therapy, 71(2), 7102290020p1-7102290020p9.
- Liu, C. H., Hsieh, Y. T., Tseng, H. P., Lin, H. C., Lin, C. L., Wu, T. Y., ... & Zhang, H. (2016). Acupuncture for a first episode of acute ischaemic stroke: an observer-blinded randomised controlled pilot study. Acupuncture in Medicine, 34(5), 349-355.
- Liu, H., & Au-Yeung, S. S. (2017). Corticomotor excitability effects of peripheral nerve electrical stimulation to the paretic arm in stroke. American Journal of Physical Medicine & Rehabilitation, 96(10), 687-693.
- Liu, H., Song, L. P., & Zhang, T. (2014). Mental practice combined with physical practice to enhance hand recovery in stroke patients. Behavioural neurology, 2014.
- Liu, J., Feng, W., Zhou, J., Huang, F., Long, L., Wang, Y., ... & Sun, Z. (2020). Effects of Sling Exercise Therapy on balance, mobility, activities of daily living, quality of life and shoulder pain in stroke patients: a randomized controlled trial. European Journal of Integrative Medicine, 101077.

- Liu, K. P., Balderi, K., Leung, T. L. F., Yue, A. S. Y., Lam, N. C. W., Cheung, J. T. Y., ... & Mok, V. C. T. (2016). A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients. European journal of neurology, 23(8), 1351-1360.
- Liu, K. P., Chan, C. C., Lee, T. M., & Hui-Chan, C. W. (2004). Mental imagery for promoting relearning for people after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 85(9), 1403-1408.
- Liu, K. P., Chan, C. C., Wong, R. S., Kwan, I. W., Yau, C. S., Li, L. S., & Lee, T. M. (2009). A randomized controlled trial of mental imagery augment generalization of learning in acute poststroke patients. Stroke, 40(6), 2222-2225.
- Liu, W., Mukherjee, M., Tsaur, Y., Kim, S. H., Liu, H., Natarajan, P., & Agah, A. (2009, September). Development and feasibility study of a sensory-enhanced robot-aided motor training in stroke rehabilitation. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 5965-5968). IEEE.
- Lo, A. C., Guarino, P. D., Richards, L. G., Haselkorn, J. K., Wittenberg, G. F., Federman, D. G., ... & Bever Jr, C. T. (2010). Robot-assisted therapy for long-term upper-limb impairment after stroke. New England Journal of Medicine, 362(19), 1772-1783.
- Lo, Y. L., Cui, S. L., & Fook-Chong, S. (2005). The effect of acupuncture on motor cortex excitability and plasticity. Neuroscience letters, 384(1-2), 145-149.
- Long, H., Wang, H., Zhao, C., Duan, Q., Feng, F., Hui, N., ... & Yuan, H. (2018). Effects of combining high-and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restorative neurology and neuroscience, 36(1), 21-30.
- Long, H., Wang, H., Zhao, C., Duan, Q., Feng, F., Hui, N., ... & Yuan, H. (2018). Effects of combining high-and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Restorative neurology and neuroscience, 36(1), 21-30.
- Lüdemann-Podubecká, J., Bösl, K., & Nowak, D. A. (2016). Inhibition of the contralesional dorsal premotor cortex improves motor function of the affected hand following stroke. European journal of neurology, 23(4), 823-830.
- Lüdemann-Podubecká, J., Bösl, K., Theilig, S., Wiederer, R., & Nowak, D. A. (2015). The effectiveness of 1Hz rTMS over the primary motor area of the unaffected hemisphere to improve hand function after stroke depends on hemispheric dominance. Brain stimulation, 8(4), 823-830.
- Luft, A. R., McCombe-Waller, S., Whitall, J., Forrester, L. W., Macko, R., Sorkin, J. D., ... & Hanley, D. F. (2004). Repetitive bilateral arm training and motor cortex activation in chronic stroke: a randomized controlled trial. Jama, 292(15), 1853-1861.
- Lum, P. S., Burgar, C. G., Shor, P. C., Majmundar, M., & Van der Loos, M. (2002). Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of physical medicine and rehabilitation, 83(7), 952-959.

- Lum, P., Reinkensmeyer, D., Mahoney, R., Rymer, W. Z., & Burgar, C. (2002). Robotic devices for movement therapy after stroke: current status and challenges to clinical acceptance. Topics in stroke rehabilitation, 8(4), 40-53.
- Lyden, P., & Wahlgren, N. G. (2000). Mechanisms of action of neuroprotectants in stroke. *Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association*, *9*(6 Pt 2), 9–14. https://doi.org/10.1053/jscd.2000.19316
- Lynch, D., Ferraro, M., Krol, J., Trudell, C. M., Christos, P., & Volpe, B. T. (2005). Continuous passive motion improves shoulder joint integrity following stroke. Clinical rehabilitation, 19(6), 594-599.
- MacIsaac, R. L., Ali, M., Taylor-Rowan, M., Rodgers, H., Lees, K. R., & Quinn, T. J. (2017). Use of a 3-item short-form version of the Barthel Index for use in stroke: systematic review and external validation. Stroke, 48(3), 618-623.
- Madhoun, H. Y., Tan, B., Feng, Y., Zhou, Y., Zhou, C., & Yu, L. (2020). Task-based mirror therapy enhances the upper limb motor function in subacute stroke patients: a randomized control trial. European Journal of Physical and Rehabilitation Medicine.
- Maier, M., Ballester, B. R., Bañuelos, N. L., Oller, E. D., & Verschure, P. F. (2020). Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial. Journal of neuroengineering and rehabilitation, 17(1), 1-20.
- Malcolm, M. P., Triggs, W. J., Light, K. E., Rothi, L. J. G., Wu, S., Reid, K., & Nadeau, S. E. (2007). Repetitive transcranial magnetic stimulation as an adjunct to constraint-induced therapy: an exploratory randomized controlled trial. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists, 86(9), 707.
- Malhotra, S., Rosewilliam, S., Hermens, H., Roffe, C., Jones, P., & Pandyan, A. D. (2013). A randomized controlled trial of surface neuromuscular electrical stimulation applied early after acute stroke: effects on wrist pain, spasticity and contractures. Clinical rehabilitation, 27(7), 579-590.
- Mane, R., Chew, E., Phua, K. S., Ang, K. K., Robinson, N., Vinod, A. P., & Guan, C. (2019). Prognostic and monitory EEG-biomarkers for BCI upper-limb stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(8), 1654-1664.
- Mangold, S., Schuster, C., Keller, T., Zimmermann-Schlatter, A., & Ettlin, T. (2009). Motor training of upper extremity with functional electrical stimulation in early stroke rehabilitation. Neurorehabilitation and neural repair, 23(2), 184-190.
- Mann, G. E., Burridge, J. H., Malone, L. J., & Strike, P. W. (2005). A pilot study to investigate the effects of electrical stimulation on recovery of hand function and sensation in subacute stroke patients. Neuromodulation: Technology at the Neural Interface, 8(3), 193-202.
- Mansur, C. G., Fregni, F., Boggio, P. S., Riberto, M., Gallucci-Neto, J., Santos, C. M., ... & Pascual-Leone, A. (2005). A sham stimulation-controlled trial of rTMS of the unaffected hemisphere in stroke patients. Neurology, 64(10), 1802-1804.
- Marciniak, C. M., Harvey, R. L., Gagnon, C. M., Duraski, S. A., Denby, F. A., McCarty, S., ... & Fierstein, K. M. (2012). Does botulinum toxin type A decrease pain and lessen disability in

hemiplegic survivors of stroke with shoulder pain and spasticity?: a randomized, double-blind, placebo-controlled trial. American journal of physical medicine & rehabilitation, 91(12), 1007-1019.

Mares, K., Cross, J., Clark, A., Vaughan, S., Barton, G. R., Poland, F., ... & Pomeroy, V. M. (2014). Feasibility of a randomized controlled trial of functional strength training for people between six months and five years after stroke: FeSTivaLS trial. Trials, 15(1), 322.

Marquez, J. L., Conley, A. C., Karayanidis, F., Miller, J., Lagopoulos, J., & Parsons, M. W. (2017). Determining the benefits of transcranial direct current stimulation on functional upper limb movement in chronic stroke. International Journal of Rehabilitation Research, 40(2), 138-145.

Marquez-Chin, C., Bagher, S., Zivanovic, V., & Popovic, M. R. (2017). Functional electrical stimulation therapy for severe hemiplegia: Randomized control trial revisited: La simulation électrique fonctionnelle pour le traitement d'une hémiplégie sévère: un essai clinique aléatoire revisité. Canadian Journal of Occupational Therapy, 84(2), 87-97.

Marryam, M., & Umar, M. (2017). Effectiveness of task oriented training in improving upper limb. Rawal Medical Journal, 42(3).

Marvulli, R., Mastromauro, L., Romanelli, E., Lopopolo, A., Dargenio, M., Fornarelli, F., ... & lanieri, G. (2016). How botulinum toxin type A-occupational therapy (OT)-functional electrical stimulation (FES) modify spasticity and functional recovery in patients with upper limb spasticity post stroke. Clinical Immunology, Endocrine & Metabolic Drugs, 3(1), 62-67.

Masakado, Y., Abo, M., Kondo, K., Saeki, S., Saitoh, E., Dekundy, A., ... & Kaji, R. (2020). Efficacy and safety of incobotulinumtoxinA in post-stroke upper-limb spasticity in Japanese subjects: results from a randomized, double-blind, placebo-controlled study (J-PURE). Journal of Neurology, 1-13.

Masiero, S., Armani, M., & Rosati, G. (2011). Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. Journal of Rehabilitation Research & Development, 48(4), 355-367.

Masiero, S., Armani, M., Ferlini, G., Rosati, G., & Rossi, A. (2014). Randomized trial of a robotic assistive device for the upper extremity during early inpatient stroke rehabilitation. Neurorehabilitation and neural repair, 28(4), 377-386.

Masiero, S., Celia, A., Armani, M., & Rosati, G. (2006). A novel robot device in rehabilitation of post-stroke hemiplegic upper limbs. Aging clinical and experimental research, 18(6), 531-535.

Masiero, S., Celia, A., Rosati, G., & Armani, M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Archives of physical medicine and rehabilitation, 88(2), 142-149.

Mateen, B. A., Baker, K., & Playford, E. D. (2018). Rasch analysis of the upper-limb subscale of the stroke rehabilitation assessment of movement (STREAM) tool in an acute stroke cohort Rasch analysis of the upper-limb subscale of the STREAM tool in an acute stroke population. Topics in stroke rehabilitation, 1-8.

Mathieson, S., Parsons, J., Kaplan, M., & Parsons, M. (2018). Combining functional electrical stimulation and mirror therapy for upper limb motor recovery following stroke: a randomised trial. European Journal of Physiotherapy, 1-6.

Matsuura, A., Onoda, K., Oguro, H., & Yamaguchi, S. (2015). Magnetic stimulation and movement - related cortical activity for acute stroke with hemiparesis. European Journal of Neurology, 22(12), 1526-1532.

Mazzoleni, S., Battini, E., Crecchi, R., Dario, P., & Posteraro, F. (2018). Upper limb robot-assisted therapy in subacute and chronic stroke patients using an innovative end-effector haptic device: A pilot study. NeuroRehabilitation, 42(1), 43-52.

Mazzoleni, S., Do Tran, V., Iardella, L., Dario, P., & Posteraro, F. (2017, July). Randomized, sham-controlled trial based on transcranial direct current stimulation and wrist robot-assisted integrated treatment on subacute stroke patients: Intermediate results. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 555-560). IEEE.

Mazzoleni, S., Tran, V. D., Dario, P., & Posteraro, F. (2019). Effects of Transcranial Direct Current Stimulation (tDCS) combined with wrist robot-assisted rehabilitation on motor recovery in subacute stroke patients: a randomized controlled trial. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(7), 1458-1466.

McCabe, J., Monkiewicz, M., Holcomb, J., Pundik, S., & Daly, J. J. (2015). Comparison of robotics, functional electrical stimulation, and motor learning methods for treatment of persistent upper extremity dysfunction after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 96(6), 981-990.

McCombe Waller, S., Liu, W., & Whitall, J. (2008). Temporal and spatial control following bilateral versus unilateral training. Human movement science, 27(5), 749-758.

McCombe Waller, S., Whitall, J., Jenkins, T., Magder, L. S., Hanley, D. F., Goldberg, A., & Luft, A. R.(2014). Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke. BMC Neurology, 14(1), 67-75.

McCrory, P., Turner-Stokes, L., Baguley, I. J., De Graaff, S., Katrak, P., Sandanam, J., ... & Hughes, A. (2009). Botulinum toxin A for treatment of upper limb spasticity following stroke: a multi-centre randomized placebo-controlled study of the effects on quality of life and other person-centred outcomes. Journal of Rehabilitation Medicine, 41(7), 536-544.

McDonnell, M. N., Hillier, S. L., Miles, T. S., Thompson, P. D., & Ridding, M. C. (2007). Influence of combined afferent stimulation and task-specific training following stroke: a pilot randomized controlled trial. Neurorehabilitation and neural repair, 21(5), 435-443.

McNulty, P. A., Thompson-Butel, A. G., Faux, S. G., Lin, G., Katrak, P. H., Harris, L. R., & Shiner, C. T. (2015). The efficacy of Wii-based Movement Therapy for upper limb rehabilitation in the chronic poststroke period: a randomized controlled trial. International Journal of Stroke, 10(8), 1253-1260.

- Mehrholz, J., Wagner, K., Meissner, D., Grundmann, K., Zange, C., Koch, R., & Pohl, M. (2005). Reliability of the Modified Tardieu Scale and the Modified Ashworth Scale in adult patients with severe brain injury: a comparison study. Clinical rehabilitation, 19(7), 751-759.
- Menezes, I. S., Cohen, L. G., Mello, E. A., Machado, A. G., Peckham, P. H., Anjos, S. M., ... & Conforto, A. B. (2018). Combined brain and peripheral nerve stimulation in chronic stroke patients with moderate to severe motor impairment. Neuromodulation: Technology at the Neural Interface, 21(2), 176-183.
- Meng, G., Meng, X., Tan, Y., Yu, J., Jin, A., Zhao, Y., & Liu, X. (2018). Short-Term Efficacy of Hand-Arm Bimanual Intensive Training On Upper Arm Function In Acute Stroke Patients: A Randomized Controlled Trial. Frontiers in Neurology, 8, 726.
- Meng, Y., Zhang, D., Hai, H., Zhao, Y. Y., & Ma, Y. W. (2020). Efficacy of coupling intermittent theta-burst stimulation and 1 Hz repetitive transcranial magnetic stimulation to enhance upper limb motor recovery in subacute stroke patients: A randomized controlled trial. Restorative Neurology and Neuroscience, (Preprint), 1-10.
- Meng, Z. Y., & Song, W. Q. (2017). Low frequency repetitive transcranial magnetic stimulation improves motor dysfunction after cerebral infarction. Neural regeneration research, 12(4), 610.
- Meythaler, J. M., Vogtle, L., & Brunner, R. C. (2009). A preliminary assessment of the benefits of the addition of botulinum toxin a to a conventional therapy program on the function of people with longstanding stroke. Archives of physical medicine and rehabilitation, 90(9), 1453-1461.
- Michaelsen, S. M., & Levin, M. F. (2004). Short-term effects of practice with trunk restraint on reaching movements in patients with chronic stroke: a controlled trial. *Stroke*, *35*(8), 1914-1919.
- Michaelsen, S. M., Dannenbaum, R., & Levin, M. F. (2006). Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke, 37(1), 186-192.
- Michielsen, M. E., Selles, R. W., van der Geest, J. N., Eckhardt, M., Yavuzer, G., Stam, H. J., ... & Bussmann, J. B. (2011). Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabilitation and neural repair, 25(3), 223-233.
- Michielsen, M., Vaughan-Graham, J., Holland, A., Magri, A., & Suzuki, M. (2017). The Bobath concept—a model to illustrate clinical practice. Disability and rehabilitation, 1-13.
- Michimata, A., Kondo, T., Suzukamo, Y., Chiba, M., & Izumi, S. I. (2008). The manual function test: norms for 20-to 90-year-olds and effects of age, gender, and hand dominance on dexterity. The Tohoku journal of experimental medicine, 214(3), 257-267.
- Mihara, M., Hattori, N., Hatakenaka, M., Yagura, H., Kawano, T., Hino, T., & Miyai, I. (2013). Near-infrared spectroscopy—mediated neurofeedback enhances efficacy of motor imagery—based training in poststroke victims: a pilot study. Stroke, 44(4), 1091-1098.
- Mikami, K., Jorge, R. E., Adams Jr, H. P., Davis, P. H., Leira, E. C., Jang, M., & Robinson, R. G. (2011). Effect of antidepressants on the course of disability following stroke. The American journal of geriatric psychiatry, 19(12), 1007-1015.

- Milot, M. H., Spencer, S. J., Chan, V., Allington, J. P., Klein, J., Chou, C., ... & Reinkensmeyer, D. J. (2013). A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. Journal of neuroengineering and rehabilitation, 10(1), 112.
- Milot, M. H., Spencer, S. J., Chan, V., Allington, J. P., Klein, J., Chou, C., ... & Reinkensmeyer, D. J. (2013). A crossover pilot study evaluating the functional outcomes of two different types of robotic movement training in chronic stroke survivors using the arm exoskeleton BONES. Journal of neuroengineering and rehabilitation, 10(1), 112.
- Miyamoto, S., Kondo, T., Suzukamo, Y., Michimata, A., & Izumi, S. I. (2009). Reliability and validity of the Manual Function Test in patients with stroke. American journal of physical medicine & rehabilitation, 88(3), 247-255.
- Miyasaka, H., Orand, A., Ohnishi, H., Tanino, G., Takeda, K., & Sonoda, S. (2016). Ability of electrical stimulation therapy to improve the effectiveness of robotic training for paretic upper limbs in patients with stroke. Medical engineering & physics, 38(11), 1172-1175.
- Mohammadianinejad, S. E., Majdinasab, N., Sajedi, S. A., Abdollahi, F., Moqaddam, M. M., & Sadr, F. (2014). The effect of lithium in post-stroke motor recovery: a double-blind, placebo-controlled, randomized clinical trial. Clinical neuropharmacology, 37(3), 73-78.
- Momosaki, R., Yamada, N., Ota, E., & Abo, M. (2017). Repetitive peripheral magnetic stimulation for activities of daily living and functional ability in people after stroke. Cochrane Database of Systematic Reviews, (6).
- Monte-Silva (2019). Electromyogram-Related Neuromuscular Electrical Stimulation for Restoring Wrist and Hand Movement in Poststroke Hemiplegia: A Systematic Review and Meta-Analysis.
- Moon, J. H., Park, K. Y., Kim, H. J., & Na, C. H. (2018). The effects of task-oriented circuit training using rehabilitation tools on the upper-extremity functions and daily activities of patients with acute stroke: A randomized controlled pilot trial. Osong public health and research perspectives, 9(5), 225.
- Moon, S. K., Whang, Y. K., Park, S. U., Ko, C. N., Kim, Y. S., Bae, H. S., & Cho, K. H. (2003). Antispastic effect of electroacupuncture and moxibustion in stroke patients. The American journal of Chinese medicine, 31(03), 467-474.
- Morreale, M., Marchione, P., Pili, A., Lauta, A., Castiglia, S. F., Spallone, A., ... & Giacomini, P. (2016). Early versus delayed rehabilitation treatment in hemiplegic patients with ischemic stroke: proprioceptive or cognitive approach. Eur J Phys Rehabil Med, 52(1), 81-89.
- Morris, J. H., & Van Wijck, F. (2012). Responses of the less affected arm to bilateral upper limb task training in early rehabilitation after stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 93(7), 1129-1137.
- Morris, J. H., van Wijck, F., Joice, S., Ogston, S. A., Cole, I., & MacWalter, R. S. (2008). A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: a randomized controlled trial. Archives of physical medicine and rehabilitation, 89(7), 1237-1245.

- Mortensen, J., Figlewski, K., & Andersen, H. (2016). Combined transcranial direct current stimulation and home-based occupational therapy for upper limb motor impairment following intracerebral hemorrhage: a double-blind randomized controlled trial. Disability and rehabilitation, 38(7), 637-643.
- Mugler, E. M., Tomic, G., Singh, A., Hameed, S., Lindberg, E. W., Gaide, J., ... & Jacobson, T. (2019). Myoelectric Computer Interface Training for Reducing Co-Activation and Enhancing Arm Movement in Chronic Stroke Survivors: A Randomized Trial. Neurorehabilitation and neural repair, 33(4), 284-295.
- Mukherjee, M., McPeak, L. K., Redford, J. B., Sun, C., & Liu, W. (2007). The effect of electro-acupuncture on spasticity of the wrist joint in chronic stroke survivors. *Archives of physical medicine and rehabilitation*, 88(2), 159-166.
- Mulder, M., & Nijland, R. (2016). Stroke Impact Scale. Journal of physiotherapy, 62(2), 117.
- Müller, K., Bütefisch, C. M., Seitz, R. J., & Hömberg, V. (2007). Mental practice improves hand function after hemiparetic stroke. Restorative neurology and neuroscience, 25(5, 6), 501-511.
- Murdoch, K., Buckley, J. D., & McDonnell, M. N. (2016). The effect of aerobic exercise on neuroplasticity within the motor cortex following stroke. PloS one, 11(3), e0152377.
- Muresanu, D. F., Heiss, W. D., Hoemberg, V., Bajenaru, O., Popescu, C. D., Vester, J. C., ... & Guekht, A. (2016). Cerebrolysin and Recovery After Stroke (CARS) A randomized, placebocontrolled, double-blind, multicenter trial. Stroke, 47(1), 151-159.
- Murphy, M. A., Willén, C., & Sunnerhagen, K. S. (2011). Kinematic variables quantifying upperextremity performance after stroke during reaching and drinking from a glass. Neurorehabilitation and neural repair, 25(1), 71-80.
- Myint, J. M. W. W., Yuen, G. F. C., Yu, T. K. K., Kng, C. P. L., Wong, A. M. Y., Chow, K. K. C., ... & Wong, C. P. (2008). A study of constraint-induced movement therapy in subacute stroke patients in Hong Kong. Clinical rehabilitation, 22(2), 112-124.
- Nadeau, S. E., Behrman, A. L., Davis, S. E., Reid, K., Wu, S. S., Stidham, B. S., ... & Rothi, L. G. (2004). Donepezil as an adjuvant to constraint-induced therapy for upper-limb dysfunction after stroke: an exploratory randomized clinical trial. Journal of rehabilitation research and development, 41(4), 525-534.
- Nadeau, S. E., Davis, S. E., Wu, S. S., Dai, Y., & Richards, L. G. (2014). A pilot randomized controlled trial of D-cycloserine and distributed practice as adjuvants to constraint-induced movement therapy after stroke. Neurorehabilitation and Neural Repair, 28(9), 885-895.
- Naeser, M. A., Alexander, M. P., Stiassny-Eder, D., Galler, V., Hobbs, J., & Bachman, D. (1992). Real versus sham acupuncture in the treatment of paralysis in acute stroke patients: a CT scan lesion site study. Journal of Neurologic Rehabilitation, 6(4), 163-174.
- Naghdi, S., Ansari, N. N., Mansouri, K., & Hasson, S. (2010). A neurophysiological and clinical study of Brunnstrom recovery stages in the upper limb following stroke. Brain injury, 24(11), 1372-1378.

- Nair, D. G., Renga, V., Lindenberg, R., Zhu, L., & Schlaug, G. (2011). Optimizing recovery potential through simultaneous occupational therapy and non-invasive brain-stimulation using tDCS. Restorative neurology and neuroscience, 29(6), 411-420.
- Nam, H. S., Park, Y. G., Paik, N. J., Oh, B. M., Chun, M. H., Yang, H. E., ... & Chang, M. C. (2015). Efficacy and safety of NABOTA in post-stroke upper limb spasticity: a phase 3 multicenter, double-blinded, randomized controlled trial. Journal of the neurological sciences, 357(1-2), 192-197.
- Nam, J. S., Im Yi, T., & Im Moon, H. (2019). Effects of adjuvant mental practice using inverse video of the unaffected upper limb in subacute stroke: a pilot randomized controlled study. International Journal of Rehabilitation Research, 42(4), 337-343.
- Narayan Arya, K., Verma, R., Garg, R. K., Sharma, V. P., Agarwal, M., & Aggarwal, G. G. (2012). Meaningful task-specific training (MTST) for stroke rehabilitation: a randomized controlled trial. Topics in Stroke Rehabilitation, 19(3), 193-211.
- Nasb, M., Li, Z., SA Youssef, A., Dayoub, L., & Chen, H. (2019). Comparison of the effects of modified constraint-induced movement therapy and intensive conventional therapy with a botulinum-a toxin injection on upper limb motor function recovery in patients with stroke. Libyan Journal of Medicine, 14(1), 1609304.
- Nascimento, L. R., Michaelsen, S. M., Ada, L., Polese, J. C., & Teixeira-Salmela, L. F. (2014). Cyclical electrical stimulation increases strength and improves activity after stroke: a systematic review. Journal of physiotherapy, 60(1), 22-30.
- Nelson, L. A. (2007). The role of biofeedback in stroke rehabilitation: past and future directions. Topics in stroke rehabilitation, 14(4), 59-66.
- Nepveu, J. F., Thiel, A., Tang, A., Fung, J., Lundbye-Jensen, J., Boyd, L. A., & Roig, M. (2017). A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke. Neurorehabilitation and neural repair, 31(8), 726–735.
- Neuendorf, T., Zschäbitz, D., Nitzsche, N., & Schulz, H. (2017). Movement therapy of the upper extremities with a robotic ball in stroke patients: results of a randomized controlled crossover study. Neurology International Open, 1(04), E326-E335.
- Ni, H. H., Cui, X., Hu, Y. S., Wu, Y., Huang, D. Q., Qu, P. Y., ... & Shi, J. C. (2013). Effect of combining acupuncture and functional training on post-stroke functional impairment of hand. Journal of Acupuncture and Tuina Science, 11(6), 349-352.
- Nicolo, P., Magnin, C., Pedrazzini, E., Plomp, G., Mottaz, A., Schnider, A., & Guggisberg, A. G. (2018). Comparison of neuroplastic responses to cathodal transcranial direct current stimulation and continuous theta burst stimulation in subacute stroke. Archives of Physical Medicine and Rehabilitation, 99(5), 862-872.
- Nijenhuis, S. M., Prange-Lasonder, G. B., Stienen, A. H., Rietman, J. S., & Buurke, J. H. (2017). Effects of training with a passive hand orthosis and games at home in chronic stroke: a pilot randomised controlled trial. Clinical rehabilitation, 31(2), 207-216.

- Nilsen, D. M., Gillen, G., DiRusso, T., & Gordon, A. M. (2012). Effect of imagery perspective on occupational performance after stroke: A randomized controlled trial. American Journal of Occupational Therapy, 66(3), 320-329.
- Nilsson, L., Carlsson, J., Danielsson, A., Fugl-Meyer, A., Hellström, K., Kristensen, L., ... & Grimby, G. (2001). Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clinical Rehabilitation, 15(5), 515-527.
- Noh, J. S., Lim, J. H., Choi, T. W., Jang, S. G., & Pyun, S. B. (2019). Effects and safety of combined rTMS and action observation for recovery of function in the upper extremities in stroke patients: A randomized controlled trial. Restorative neurology and neuroscience, 37(3), 219-230.
- Noma, T., Matsumoto, S., Etoh, S., Shimodozono, M., & Kawahira, K. (2009). Anti-spastic effects of the direct application of vibratory stimuli to the spastic muscles of hemiplegic limbs in post-stroke patients. Brain Injury, 23(7-8), 623-631.
- Nomikos, P. A., Spence, N., & Alshehri, M. A. (2018). Test-retest reliability of physiotherapists using the action research arm test in chronic stroke. Journal of Physical Therapy Science, 30(10), 1271-1277.
- Norouzi-Gheidari, N., Hernandez, A., Archambault, P. S., Higgins, J., Poissant, L., & Kairy, D. (2020). Feasibility, safety and efficacy of a virtual reality EXERGAME system to supplement upper extremity rehabilitation post-stroke: a pilot randomized clinical trial and proof of principle. International Journal of Environmental Research and Public Health, 17(1), 113.
- Ochi, M., Saeki, S., Oda, T., Matsushima, Y., & Hachisuka, K. (2013). Effects of anodal and cathodal transcranial direct current stimulation combined with robotic therapy on severely affected arms in chronic stroke patients. Journal of Rehabilitation Medicine, 45(2), 137-140.
- O'Dell, M. W., Kim, G., Finnen, L. R., & Polistena, C. (2011). Clinical implications of using the arm motor ability test in stroke rehabilitation. Archives of physical medicine and rehabilitation, 92(5), 830-836.
- O'Dell, M. W., Kim, G., Rivera, L., Fieo, R., Christos, P., Polistena, C., ... & Gorga, D. (2013). A psychometric evaluation of the Arm Motor Ability Test. *Journal of rehabilitation medicine*, *45*(6), 519-527.
- ÖGÜN, M. N., Kurul, R., YAŞAR, M. F., Turkoglu, S. A., AVCI, Ş., & Yildiz, N. (2019). Effect of leap motion-based 3D immersive virtual reality usage on upper extremity function in ischemic stroke patients. Arquivos de neuro-psiquiatria, 77(10), 681-688.
- Oh, Y. B., Kim, G. W., Han, K. S., Won, Y. H., Park, S. H., Seo, J. H., & Ko, M. H. (2019). Efficacy of virtual reality combined with real instrument training for patients with stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 100(8), 1400-1408.
- Ohura, T., Hase, K., Nakajima, Y., & Nakayama, T. (2017). Validity and reliability of a performance evaluation tool based on the modified Barthel Index for stroke patients. BMC medical research methodology, 17(1), 131.

- Okuyama, K., Ogura, M., Kawakami, M., Tsujimoto, K., Okada, K., Miwa, K., ... & Liu, M. (2018). Effect of the combination of motor imagery and electrical stimulation on upper extremity motor function in patients with chronic stroke: preliminary results. Therapeutic advances in neurological disorders, 11, 1756286418804785.
- Oliveira, M. D. C. B., Silva, D. R. C., Cortez, B. V., Coêlho, C. K. D. S., Oliveira, G. B. V. P. D., Sá-Caputo, D. D. C. D., ... & Moraes Silva, J. D. (2018). Mirror and Vibration Therapies Effects on the Upper Limbs of Hemiparetic Patients after Stroke: A Pilot Study. Rehabilitation Research and Practice, 2018.
- Ooi, H. K., Chai, S. C., & Kadar, M. (2020). Effects of pressure garment on spasticity and function of the arm in the early stages after stroke: a randomized controlled trial. Clinical rehabilitation, 34(4), 515-523.
- Oostra, K. M., Vereecke, A., Jones, K., Vanderstraeten, G., & Vingerhoets, G. (2012). Motor imagery ability in patients with traumatic brain injury. Archives of physical medicine and rehabilitation, 93(5), 828-833.
- Osumi, M., Sumitani, M., Otake, Y., & Morioka, S. (2018). A "matched" sensory reference can guide goal-directed movements of the affected hand in central post-stroke sensory ataxia. Experimental brain research, 236(5), 1263-1272.
- Özkeskin, M., Öztürk, V., Çakmur, R., Kara, B., & Küçük, F. (2017). The Effects of Navigated Repetitive Transcranial Magnetic Simulation and Brunnstrom Movement Therapy on Upper Extremity Proprioceptive Sense and Spasticity in Stroke Patients: A Double-Blind Randomized Trial. Journal of Basic and Clinical Health Sciences, 1(2), 29-36.
- Page, S. J. & Peters, H. (2014). Mental practice: applying motor practice and neuroplasticity principles to increase upper extremity function. Stroke, 45(11), 3454-3460.
- Page, S. J. (2000). Imagery improves upper extremity motor function in chronic stroke patients: a pilot study. The Occupational Therapy Journal of Research, 20(3), 200-215.
- Page, S. J. (2003). Intensity versus task-specificity after stroke: how important is intensity?. American journal of physical medicine & rehabilitation, 82(9), 730-732.
- Page, S. J., Dunning, K., Hermann, V., Leonard, A., & Levine, P. (2011). Longer versus shorter mental practice sessions for affected upper extremity movement after stroke: a randomized controlled trial. Clinical rehabilitation, 25(7), 627-637.
- Page, S. J., Griffin, C., & White, S. E. (2020). Efficacy of Myoelectric Bracing in Moderately Impaired Stroke Survivors: A Randomized, Controlled Trial. Journal of Rehabilitation Medicine, 52(2), 1-6.
- Page, S. J., Hill, V., & White, S. (2013). Portable upper extremity robotics is as efficacious as upper extremity rehabilitative therapy: a randomized controlled pilot trial. Clinical rehabilitation, 27(6), 494-503.
- Page, S. J., Levin, L., Hermann, V., Dunning, K., & Levine, P. (2012). Longer versus shorter daily durations of electrical stimulation during task-specific practice in moderately impaired stroke. Archives of physical medicine and rehabilitation, 93(2), 200-206.

- Page, S. J., Levine, P., & Leonard, A. (2007). Mental practice in chronic stroke: results of a randomized, placebo-controlled trial. Stroke, 38(4), 1293-1297.
- Page, S. J., Levine, P., & Leonard, A. C. (2005). Effects of mental practice on affected limb use and function in chronic stroke. Archives of physical medicine and rehabilitation, 86(3), 399-402.
- Page, S. J., Levine, P., & Leonard, A. C. (2005). Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. *Neurorehabilitation and neural repair*, 19(1), 27-32.
- Page, S. J., Levine, P., Leonard, A., Szaflarski, J. P., & Kissela, B. M. (2008). Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Physical therapy, 88(3), 333-340.
- Page, S. J., Levine, P., Sisto, S., & Johnston, M. V. (2001). A randomized efficacy and feasibility study of imagery in acute stroke. *Clinical rehabilitation*, *15*(3), 233-240.
- Page, S. J., Sisto, S., Johnston, M. V., & Levine, P. (2002). Modified constraint-induced therapy after subacute stroke: a preliminary study. Neurorehabilitation and Neural Repair, 16(3), 290-295.
- Page, S. J., Sisto, S., Levine, P., & McGrath, R. E. (2004). Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Archives of physical medicine and rehabilitation, 85(1), 14-18.
- Page, S. J., Sisto, S., Levine, P., & McGrath, R. E. (2004). Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Archives of physical medicine and rehabilitation, 85(1), 14-18.
- Pan, L. L. H., Yang, W. W., Kao, C. L., Tsai, M. W., Wei, S. H., Fregni, F., ... & Chou, L. W. (2018). Effects of 8-week sensory electrical stimulation combined with motor training on EEG-EMG coherence and motor function in individuals with stroke. Scientific reports, 8(1), 9217.
- Pan, W., Wang, P., Song, X., Sun, X., & Xie, Q. (2019). The Effects of Combined Low Frequency Repetitive Transcranial Magnetic Stimulation and Motor Imagery on Upper Extremity Motor Recovery Following Stroke. Frontiers in neurology, 10, 96.
- Panarese, A., Pirondini, E., Tropea, P., Cesqui, B., Posteraro, F., & Micera, S. (2016). Model-based variables for the kinematic assessment of upper-extremity impairments in post-stroke patients. Journal of neuroengineering and rehabilitation, 13(1), 81.
- Pandian, S., Arya, K. N., & Davidson, E. R. (2012). Comparison of Brunnstrom movement therapy and Motor Relearning Program in rehabilitation of post-stroke hemiparetic hand: a randomized trial. Journal of bodywork and movement therapies, 16(3), 330-337.
- Pang, M. Y., Eng, J. J., & Miller, W. C. (2007). Determinants of satisfaction with community reintegration in older adults with chronic stroke: role of balance self-efficacy. Physical therapy, 87(3), 282-291.
- Pang, M. Y., Harris, J. E., & Eng, J. J. (2006). A community-based upper-extremity group exercise program improves motor function and performance of functional activities in chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 87(1), 1-9.

- Paoloni, M., Tavernese, E., Fini, M., Sale, P., Franceschini, M., Santilli, V., & Mangone, M. (2014). Segmental muscle vibration modifies muscle activation during reaching in chronic stroke: A pilot study. NeuroRehabilitation, 35(3), 405-414.
- Papadopoulos, C. M., Tsai, S. Y., Guillen, V., Ortega, J., Kartje, G. L., & Wolf, W. A. (2009). Motor recovery and axonal plasticity with short-term amphetamine after stroke. Stroke, 40(1), 294-302.
- Pariente, J., Loubinoux, I., Carel, C., Albucher, J. F., Leger, A., Manelfe, C., ... & Chollet, F. (2001). Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke. Annals of neurology, 50(6), 718-729.
- Park, Chang-Sik (2018). "The test-retest reliability and minimal detectable change of the short-form Barthel Index (5 items) and its associations with chronic stroke-specific impairments." Journal of physical therapy science 30.6, 835-839.
- Park, J. H. (2015). The effects of modified constraint-induced therapy combined with mental practice on patients with chronic stroke. Journal of physical therapy science, 27(5), 1585-1588.
- Park, J. H. (2019). Effects of mental imagery training combined electromyogram-triggered neuromuscular electrical stimulation on upper limb function and activities of daily living in patients with chronic stroke: a randomized controlled trial. Disability and Rehabilitation, 1-6.
- Park, J. H., & Park, J. H. (2016). The effects of game-based virtual reality movement therapy plus mental practice on upper extremity function in chronic stroke patients with hemiparesis: a randomized controlled trial. Journal of physical therapy science, 28(3), 811-815.
- Park, J. S., Choi, J. B., An, D. H., & Chang, M. Y. (2017). Effects of mental practice combined with electromyogram-triggered electrical stimulation for upper extremity function in stroke patients. Journal of physical therapy science, 29(10), 1819-1820.
- Park, J., Gong, J., & Yim, J. (2017). Effects of a sitting boxing program on upper limb function, balance, gait, and quality of life in stroke patients. NeuroRehabilitation, 40(1), 77-86.
- Park, J., Lee, N., Cho, M., Kim, D., & Yang, Y. (2015). Effects of mental practice on stroke patients' upper extremity function and daily activity performance. Journal of physical therapy science, 27(4), 1075-1077.
- Park, M. H., Jo, S. A., Jo, I., Kim, E., Eun, S. Y., Han, C., & Park, M. K. (2006). No difference in stroke knowledge between Korean adherents to traditional and western medicine—the AGE study: an epidemiological study. BMC Public Health, 6(1), 153.
- Park, M., Ko, M. H., Oh, S. W., Lee, J. Y., Ham, Y., Yi, H., ... & Shin, J. H. (2019). Effects of virtual reality-based planar motion exercises on upper extremity function, range of motion, and health-related quality of life: a multicenter, single-blinded, randomized, controlled pilot study. Journal of neuroengineering and rehabilitation, 16(1), 122.
- Park, Y. J., Park, S. W., & Lee, H. S. (2018). Comparison of the effectiveness of whole body vibration in stroke patients: a meta-analysis. BioMed research international, 2018.

- Park, Y., Chang, M., Kim, K. M., & An, D. H. (2015). The effects of mirror therapy with tasks on upper extremity function and self-care in stroke patients. Journal of physical therapy science, 27(5), 1499-1501.
- Parker, V. M., Wade, D. T., & Hewer, R. L. (1986). Loss of arm function after stroke: measurement, frequency, and recovery. International rehabilitation medicine, 8(2), 69-73.
- Patten, C., Condliffe, E. G., Dairaghi, C. A., & Lum, P. S. (2013). Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke. Journal of neuroengineering and rehabilitation, 10(1), 1.
- Pavlova, E. L., Lindberg, P., Khan, A., Ruschkowski, S., Nitsche, M. A., & Borg, J. (2017). Transcranial direct current stimulation combined with visuo-motor training as treatment for chronic stroke patients. Restorative neurology and neuroscience, 35(3), 307-317.
- Penta, M., Tesio, L., Arnould, C., Zancan, A., & Thonnard, J. L. (2001). The ABILHAND questionnaire as a measure of manual ability in chronic stroke patients: Rasch-based validation and relationship to upper limb impairment. Stroke, 32(7), 1627-1634.
- Peterchev, A. V., Wagner, T. A., Miranda, P. C., Nitsche, M. A., Paulus, W., Lisanby, S. H., ... & Bikson, M. (2012). Fundamentals of transcranial electric and magnetic stimulation dose: definition, selection, and reporting practices. Brain stimulation, 5(4), 435-453.
- Picelli, A., Lobba, D., Midiri, A., Prandi, P., Melotti, C., Baldessarelli, S., & Smania, N. (2014). Botulinum toxin injection into the forearm muscles for wrist and fingers spastic overactivity in adults with chronic stroke: a randomized controlled trial comparing three injection techniques. Clinical rehabilitation, 28(3), 232-242.
- Pichiorri, F., Morone, G., Petti, M., Toppi, J., Pisotta, I., Molinari, M., ... & Mattia, D. (2015). Brain–computer interface boosts motor imagery practice during stroke recovery. Annals of neurology, 77(5), 851-865.
- Platz, T., Eickhof, C., Van Kaick, S., Engel, U., Pinkowski, C., Kalok, S., & Pause, M. (2005). Impairment-oriented training or Bobath therapy for severe arm paresis after stroke: a single-blind, multicentre randomized controlled trial. Clinical rehabilitation, 19(7), 714-724.
- Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., Di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clinical rehabilitation, 19(4), 404-411.
- Platz, T., Pinkowski, C., van Wijck, F., Kim, I. H., Di Bella, P., & Johnson, G. (2005). Reliability and validity of arm function assessment with standardized guidelines for the Fugl-Meyer Test, Action Research Arm Test and Box and Block Test: a multicentre study. Clinical rehabilitation, 19(4), 404-411.
- Platz, T., van Kaick, S., Mehrholz, J., Leidner, O., Eickhof, C., & Pohl, M. (2009). Best conventional therapy versus modular impairment-oriented training for arm paresis after stroke: a single-blind, multicenter randomized controlled trial. Neurorehabilitation and neural repair, 23(7), 706-716.

- Platz, T., Vuadens, P., Eickhof, C., Arnold, P., Van Kaick, S., & Heise, K. (2008). REPAS, a summary rating scale for resistance to passive movement: item selection, reliability and validity. Disability and rehabilitation, 30(1), 44-53.
- Platz, T., Winter, T., Müller, N., Pinkowski, C., Eickhof, C., & Mauritz, K. H. (2001). Arm ability training for stroke and traumatic brain injury patients with mild arm paresis: a single-blind, randomized, controlled trial. Archives of physical medicine and rehabilitation, 82(7), 961–968.
- Plewnia, C., Hoppe, J., Hiemke, C., Bartels, M., Cohen, L. G., & Gerloff, C. (2002). Enhancement of human cortico-motoneuronal excitability by the selective norepinephrine reuptake inhibitor reboxetine. Neuroscience letters, 330(3), 231-234.
- Ploughman, M., & Corbett, D. (2004). Can forced-use therapy be clinically applied after stroke? An exploratory randomized controlled trial. *Archives of physical medicine and rehabilitation*, *85*(9), 1417-1423.
- Pomeroy, V. M., Cloud, G., Tallis, R. C., Donaldson, C., Nayak, V., & Miller, S. (2007). Transcranial magnetic stimulation and muscle contraction to enhance stroke recovery: a randomized proof-of-principle and feasibility investigation. Neurorehabilitation and neural repair, 21(6), 509-517.
- Poole, J. L., Whitney, S. L., Hangeland, N., & Baker, C. (1990). The effectiveness of inflatable pressure splints on motor function in stroke patients. The Occupational Therapy Journal of Research, 10(6), 360-366.
- Powell, E. S., Carrico, C., Westgate, P. M., Chelette, K. C., Nichols, L., Reddy, L., ... & Sawaki, L. (2016). Time configuration of combined neuromodulation and motor training after stroke: a proof-of-concept study. NeuroRehabilitation, 39(3), 439-449.
- Powell, J., Pandyan, A. D., Granat, M., Cameron, M., & Stott, D. J. (1999). Electrical stimulation of wrist extensors in poststroke hemiplegia. Stroke, 30(7), 1384-1389.
- Prange, G. B., Kottink, A. I., Buurke, J. H., Eckhardt, M. M., van Keulen-Rouweler, B. J., Ribbers, G. M., & Rietman, J. S. (2015). The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabilitation and neural repair, 29(2), 174-182.
- Prange, G. B., Kottink, A. I., Buurke, J. H., Eckhardt, M. M., van Keulen-Rouweler, B. J., Ribbers, G. M., & Rietman, J. S. (2015). The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial. Neurorehabilitation and neural repair, 29(2), 174-182.
- Prazeres, A., Lira, M., Aguiar, P., Monteiro, L., Vilasbôas, Í., & Melo, A. (2018). Efficacy of physical therapy associated with botulinum toxin type A on functional performance in post-stroke spasticity: A randomized, double-blinded, placebo-controlled trial. Neurology international, 10(2).
- Prigatano, G. P., Johnson, S. C., & Gale, S. D. (2004). Neuroimaging correlates of the Halstead Finger Tapping Test several years' post-traumatic brain injury. Brain Injury, 18(7), 661-669.

- Qian, Q., Hu, X., Lai, Q., Ng, S. C., Zheng, Y., & Poon, W. (2017). Early stroke rehabilitation of the upper limb assisted with an electromyography-driven neuromuscular electrical stimulation-robotic arm. Frontiers in neurology, 8, 447.
- Qian, W., Yu, Z. H. A. O., WANG, C. W., XING, D. B., LÜ, J. Q., Hui, P. A. N., ... & Ning, L. I. (2014). Effects of acupuncture intervention on omalgia incidence rate of ischemic stroke in acute stage. *World Journal of Acupuncture-Moxibustion*, *24*(1), 19-25.
- Quaney, B. M., Boyd, L. A., McDowd, J. M., Zahner, L. H., He, J., Mayo, M. S., & Macko, R. F. (2009). Aerobic exercise improves cognition and motor function poststroke. Neurorehabilitation and neural repair, 23(9), 879–885.
- Quinn, T. J., Dawson, J., Walters, M., & Lees, K. R. (2009). Reliability of the modified Rankin Scale: a systematic review. Stroke, 40(10), 3393-3395.
- Rabadi, M. H., & Aston, C. E. (2017). Effect of transcranial direct current stimulation on severely affected arm-hand motor function in patients after an acute ischemic stroke: a pilot randomized control trial. American journal of physical medicine & rehabilitation, 96(10), S178-S184.
- Rabadi, M. H., Galgano, M., Lynch, D., Akerman, M., Lesser, M., & Volpe, B. T. (2008). A pilot study of activity-based therapy in the arm motor recovery post stroke: a randomized controlled trial. Clinical Rehabilitation, 22(12), 1071-1082.
- Rabinstein, A. A., & Shulman, L. M. (2003). Acupuncture in clinical neurology. The neurologist, 9(3), 137-148.
- Radajewska, A., Opara, J. A., Kucio, C., Blaszczyszyn, M., Mehlich, K., & Szczygiel, J. (2013). The effects of mirror therapy on arm and hand function in subacute stroke in patients. International Journal of Rehabilitation Research, 36(3), 268-274.
- Radajewska, A., Opara, J., Biliński, G., Kaczorowska, A., Nawrat-Szołtysik, A., Kucińska, A., & Lepsy, E. (2016). Effectiveness of mirror therapy for subacute stroke in relation to chosen factors. Rehabilitation Nursing.
- Rajesh, T. (2015). Effects of motor imagery on upper extremity functional task performance and quality of life among stroke survivors. Disability, CBR & Inclusive Development, 26(1), 109-124.
- Rand, D., Weingarden, H., Weiss, R., Yacoby, A., Reif, S., Malka, R., ... & Zeilig, G. (2017). Self-training to improve UE function at the chronic stage post-stroke: a pilot randomized controlled trial. Disability and rehabilitation, 39(15), 1541-1548.
- Reinkensmeyer, D. J., Wolbrecht, E. T., Chan, V., Chou, C., Cramer, S. C., & Bobrow, J. E. (2012). Comparison of 3D, assist-as-needed robotic arm/hand movement training provided with Pneu-WREX to conventional table top therapy following chronic stroke. American journal of physical medicine & rehabilitation/Association of Academic Physiatrists, 91(11 0 3), S232.
- Rekand, T., Biering-Sörensen, B., He, J., Vilholm, O. J., Christensen, P. B., Ulfarsson, T., ... & Dalager, T. (2019). Botulinum toxin treatment of spasticity targeted to muscle endplates: an international, randomised, evaluator-blinded study comparing two different botulinum toxin injection strategies for the treatment of upper limb spasticity. BMJ open, 9(5), e024340.

- Renner, C., Brendel, C., & Hummelsheim, H. (2020). Bilateral Arm Training vs Unilateral Arm Training for Severely Affected Patients With Stroke: Exploratory Single-Blinded Randomized Controlled Trial. Archives of physical medicine and rehabilitation, 101(7), 1120–1130.
- Restemeyer, C., Weiller, C., & Liepert, J. (2007). No effect of a levodopa single dose on motor performance and motor excitability in chronic stroke. A double-blind placebo-controlled cross-over pilot study. Restorative neurology and neuroscience, 25(2), 143-150.
- Riccio, I., Iolascon, G., Barillari, M. R., Gimigliano, R., & Gimigliano, F. (2010). Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. European journal of physical and rehabilitation medicine, 46(1), 19-25.
- Richards, L., Gonzalez Rothi, L. J., Davis, S., Wu, S. S., & Nadeau, S. E. (2006). Limited dose response to constraint-induced movement therapy in patients with chronic stroke. Clinical rehabilitation, 20(12), 1066-1074.
- Richardson, M., Campbell, N., Allen, L., Meyer, M., & Teasell, R. (2016). The stroke impact scale: Performance as a quality of life measure in a community-based stroke rehabilitation setting. Disability and rehabilitation, 38(14), 1425-1430.
- Ring, H., & Rosenthal, N. (2005). Controlled study of neuroprosthetic functional electrical stimulation in sub-acute post-stroke rehabilitation. Journal of rehabilitation medicine, 37(1), 32-36.
- Ro, T., Noser, E., Boake, C., Johnson, R., Gaber, M., Speroni, A., ... & Taub, E. (2006). Functional reorganization and recovery after constraint-induced movement therapy in subacute stroke. Neurocase, 12(1), 50-60.
- Robinson, R. G., Schultz, S. K., Castillo, C., Kopel, T., Kosier, J. T., Newman, R. M., ... & Starkstein, S. E. (2000). Nortriptyline versus fluoxetine in the treatment of depression and in short-term recovery after stroke: a placebo-controlled, double-blind study. American Journal of Psychiatry, 157(3), 351-359.
- Rocha, S., Silva, E., Foerster, Á., Wiesiolek, C., Chagas, A. P., Machado, G., ... & Monte-Silva, K. (2016). The impact of transcranial direct current stimulation (tDCS) combined with modified constraint-induced movement therapy (mCIMT) on upper limb function in chronic stroke: a double-blind randomized controlled trial. Disability and rehabilitation, 38(7), 653-660.
- Rodgers H, Mackintosh J, Price C, et al. (2003). Does an early increased-intensity interdisciplinary upper limb therapy programme following acute stroke improve outcome? Clinical Rehabilitation. Sep;17(6):579-589.
- Rodrigues, L. C., Farias, N. C., Gomes, R. P., & Michaelsen, S. M. (2016). Feasibility and effectiveness of adding object-related bilateral symmetrical training to mirror therapy in chronic stroke: A randomized controlled pilot study. Physiotherapy theory and practice, 32(2), 83-91.
- Rodrigues, M. R., Slimovitch, M., Chilingaryan, G., & Levin, M. F. (2017). Does the Finger-to-Nose Test measure upper limb coordination in chronic stroke? Journal of neuroengineering and rehabilitation, 14(1), 6.
- Rogers, J. M., Duckworth, J., Middleton, S., Steenbergen, B., & Wilson, P. H. (2019). Elements virtual rehabilitation improves motor, cognitive, and functional outcomes in adult stroke:

- evidence from a randomized controlled pilot study. Journal of neuroengineering and rehabilitation, 16(1), 56.
- Roorda, L. D., Houwink, A., Smits, W., Molenaar, I. W., & Geurts, A. C. (2011). Measuring upper limb capacity in poststroke patients: development, fit of the monotone homogeneity model, unidimensionality, fit of the double monotonicity model, differential item functioning, internal consistency, and feasibility of the stroke upper limb capacity scale, SULCS. Archives of physical medicine and rehabilitation, 92(2), 214-227.
- Rosales, R. L., Kong, K. H., Goh, K. J., Kumthornthip, W., Mok, V. C. T., Delgado-De Los Santos, M. M., ... & Magis, A. (2012). Botulinum toxin injection for hypertonicity of the upper extremity within 12 weeks after stroke: a randomized controlled trial. Neurorehabilitation and neural repair, 26(7), 812-821.
- Rosales, R., Balcaitiene, J., Berard, H., Maisonobe, P., Goh, K., Kumthornthip, W., ... & Tanvijit, P. (2018). Early AbobotulinumtoxinA (Dysport®) in Post-Stroke Adult Upper Limb Spasticity: ONTIME Pilot Study. Toxins, 10(7), 253.
- Rose, D. K., Patten, C., McGuirk, T. E., Lu, X., & Triggs, W. J. (2014). Does inhibitory repetitive transcranial magnetic stimulation augment functional task practice to improve arm recovery in chronic stroke?. Stroke research and treatment, 2014.
- Rose, V., & Shah, S. (1987). A comparative study on the immediate effects of hand orthoses on reducation of hypertonus. *Australian occupational therapy journal*, *34*(2), 59-64.
- Ross, L. F., Harvey, L. A., & Lannin, N. A. (2009). Do people with acquired brain impairment benefit from additional therapy specifically directed at the hand? A randomized controlled trial. Clinical rehabilitation, 23(6), 492–503.
- Rösser, N., Heuschmann, P., Wersching, H., Breitenstein, C., Knecht, S., & Flöel, A. (2008). Levodopa improves procedural motor learning in chronic stroke patients. Archives of physical medicine and rehabilitation, 89(9), 1633-1641.
- Rowe, J. B., Chan, V., Ingemanson, M. L., Cramer, S. C., Wolbrecht, E. T., & Reinkensmeyer, D. J. (2017). Robotic assistance for training finger movement using a Hebbian model: a randomized controlled trial. Neurorehabilitation and neural repair, 31(8), 769-780.
- Safaz, I., Ylmaz, B., Yasar, E., & Alaca, R. (2009). Brunnstrom recovery stage and motricity index for the evaluation of upper extremity in stroke: analysis for correlation and responsiveness. International Journal of Rehabilitation Research, 32(3), 228-231.
- Sahin, F., Yilmaz, F., Ozmaden, A., Kotevoglu, N., Sahin, T., & Kuran, B. (2008). Reliability and validity of the Turkish version of the Nottingham Extended Activities of Daily Living Scale. Aging clinical and experimental research, 20(5), 400-405.
- Sahin, N., Ugurlu, H., & Albayrak, I. (2012). The efficacy of electrical stimulation in reducing the post-stroke spasticity: a randomized controlled study. Disability and rehabilitation, 34(2), 151-156.
- Salaffi, F., Di Carlo, M., Carotti, M., & Farah, S. (2018). Validity and interpretability of the QuickDASH in the assessment of hand disability in rheumatoid arthritis. Rheumatology international, 1-10.

- Salazar, A. P., Cimolin, V., Schifino, G. P., Rech, K. D., Marchese, R. R., & Pagnussat, A. S. (2020). Bi-cephalic transcranial direct current stimulation combined with functional electrical stimulation for upper-limb stroke rehabilitation: a double-blind randomized controlled trial. Annals of Physical and Rehabilitation Medicine, 63(1), 4-11.
- Sale, P., Ceravolo, M. G., & Franceschini, M. (2014). Action observation therapy in the subacute phase promotes dexterity recovery in right-hemisphere stroke patients. BioMed research international, 2014.
- Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., & Posteraro, F. (2014). Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. Journal of neuroengineering and rehabilitation, 11(1), 104.
- Sale, P., Mazzoleni, S., Lombardi, V., Galafate, D., Massimiani, M. P., Posteraro, F., ... & Franceschini, M. (2014). Recovery of hand function with robot-assisted therapy in acute stroke patients: a randomized-controlled trial. International journal of rehabilitation research, 37(3), 236-242.
- Sallés, L., Martín-Casas, P., Gironès, X., Durà, M. J., Lafuente, J. V., & Perfetti, C. (2017). A neurocognitive approach for recovering upper extremity movement following subacute stroke: a randomized controlled pilot study. Journal of physical therapy science, 29(4), 665-672.
- Samuelkamaleshkumar, S., Reethajanetsureka, S., Pauljebaraj, P., Benshamir, B., Padankatti, S. M., & David, J. A. (2014). Mirror therapy enhances motor performance in the paretic upper limb after stroke: a pilot randomized controlled trial. Archives of physical medicine and rehabilitation, 95(11), 2000-2005.ized clinical trial. Indian Journal of Physiotherapy & Occupational Therapy, 10(1), 71-75.
- Sanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Physical therapy, 73(7), 447-454.
- Santamato, A., Micello, M. F., Panza, F., Fortunato, F., Baricich, A., Cisari, C., ... & Ranieri, M. (2014). Can botulinum toxin type A injection technique influence the clinical outcome of patients with post-stroke upper limb spasticity? A randomized controlled trial comparing manual needle placement and ultrasound-guided injection techniques. Journal of the neurological sciences, 347(1-2), 39-43.
- Santamato, A., Micello, M. F., Panza, F., Fortunato, F., Picelli, A., Smania, N., ... & Ranieri, M. (2015). Adhesive taping vs. daily manual muscle stretching and splinting after botulinum toxin type A injection for wrist and fingers spastic overactivity in stroke patients: a randomized controlled trial. Clinical rehabilitation, 29(1), 50-58.
- Santamato, A., Notarnicola, A., Panza, F., Ranieri, M., Micello, M. F., Manganotti, P., ... & Fiore, P. (2013). SBOTE study: extracorporeal shock wave therapy versus electrical stimulation after botulinum toxin type a injection for post-stroke spasticity—a prospective randomized trial. Ultrasound in medicine & biology, 39(2), 283-291.
- Saposnik, G., Cohen, L. G., Mamdani, M., Pooyania, S., Ploughman, M., Cheung, D., ... & Nilanont, Y. (2016). Efficacy and safety of non-immersive virtual reality exercising in stroke

- rehabilitation (EVREST): a randomised, multicentre, single-blind, controlled trial. The Lancet Neurology, 15(10), 1019-1027.
- Saposnik, G., Teasell, R., Mamdani, M., Hall, J., McIlroy, W., Cheung, D., ... & Bayley, M. (2010). Effectiveness of virtual reality using Wii gaming technology in stroke rehabilitation: a pilot randomized clinical trial and proof of principle. Stroke, 41(7), 1477-1484.
- Sasaki, N., Mizutani, S., Kakuda, W., & Abo, M. (2013). Comparison of the effects of high-and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. Journal of stroke and cerebrovascular diseases, 22(4), 413-418.
- Sattler, V., Acket, B., Raposo, N., Albucher, J. F., Thalamas, C., Loubinoux, I., ... & Simonetta-Moreau, M. (2015). Anodal tDCS combined with radial nerve stimulation promotes hand motor recovery in the acute phase after ischemic stroke. Neurorehabilitation and neural repair, 29(8), 743-754.
- Sawaki, L., Butler, A. J., Leng, X., Wassenaar, P. A., Mohammad, Y. M., Blanton, S., ... & Wittenberg, G. F. (2008). Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. *Neurorehabilitation and neural repair*, 22(5), 505-513.
- Schaechter, J. D., Connell, B. D., Stason, W. B., Kaptchuk, T. J., Krebs, D. E., Macklin, E. A., ... & McGibbon, C. A. (2007). Correlated change in upper limb function and motor cortex activation after verum and sham acupuncture in patients with chronic stroke. The Journal of Alternative and Complementary Medicine, 13(5), 527-532.
- Schambra, H. M., Martinez-Hernandez, I. E., Slane, K. J., Boehme, A. K., Marshall, R. S., & Lazar, R. M. (2016). The neurophysiological effects of single-dose theophylline in patients with chronic stroke: A double-blind, placebo-controlled, randomized cross-over study. Restorative neurology and neuroscience, 34(5), 799-813.
- Schick, T., Schlake, H. P., Kallusky, J., Hohlfeld, G., Steinmetz, M., Tripp, F., ... & Dohle, C. (2017). Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restorative neurology and neuroscience, 35(3), 319-332.
- Schick, T., Schlake, H. P., Kallusky, J., Hohlfeld, G., Steinmetz, M., Tripp, F., Krakow, K., Pinter, M., & Dohle, C. (2017). Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restorative neurology and neuroscience, 35(3), 319–332.
- Scholz, D. S., Rohde, S., Nikmaram, N., Brückner, H. P., Großbach, M., Rollnik, J. D., & Altenmüller, E. O. (2016). Sonification of arm movements in stroke rehabilitation—a novel approach in neurologic music therapy. Frontiers in neurology, 7, 106.
- Schuling, J., De Haan, R., Limburg, M. T., & Groenier, K. H. (1993). The Frenchay Activities Index. Assessment of functional status in stroke patients. Stroke, 24(8), 1173-1177.
- Schuster, C., Maunz, G., Lutz, K., Kischka, U., Sturzenegger, R., & Ettlin, T. (2011). Dexamphetamine improves upper extremity outcome during rehabilitation after stroke: a pilot randomized controlled trial. Neurorehabilitation and neural repair, 25(8), 749-755.

- Schuster-Amft, C., Eng, K., Suica, Z., Thaler, I., Signer, S., Lehmann, I., ... & Kiper, D. (2018). Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial. PloS one, 13(10), e0204455.
- Schuster-Amft, C., Eng, K., Suica, Z., Thaler, I., Signer, S., Lehmann, I., ... & Kiper, D. (2018). Effect of a four-week virtual reality-based training versus conventional therapy on upper limb motor function after stroke: A multicenter parallel group randomized trial. PloS one, 13(10), e0204455.
- Schwippel, T., Schroeder, P. A., Fallgatter, A. J., & Plewnia, C. (2019). Clinical review: The therapeutic use of theta-burst stimulation in mental disorders and tinnitus. Progress in Neuro-Psychopharmacology and Biological Psychiatry.
- Seki, M., Hase, K., Takahashi, H., & Liu, M. (2014). Comparison of three instruments to assess changes of motor impairment
- Seniów, J., Bilik, M., Leśniak, M., Waldowski, K., Iwański, S., & Członkowska, A. (2012). Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. Neurorehabilitation and neural repair, 26(9), 1072-1079.
- Seo, H. G., Paik, N. J., Lee, S. U., Oh, B. M., Chun, M. H., Kwon, B. S., & Bang, M. S. (2015). Neuronox versus BOTOX in the treatment of post-stroke upper limb spasticity: a multicenter randomized controlled trial. PloS one, 10(6), e0128633.
- Seo, N. J., Woodbury, M. L., Bonilha, L., Ramakrishnan, V., Kautz, S. A., Downey, R. J., ... & Phillips, S. K. (2019). TheraBracelet stimulation during task-practice therapy to improve upper extremity function after stroke: a pilot randomized controlled study. Physical therapy, 99(3), 319-328.
- Seok, H., Lee, S. Y., Kim, J., Yeo, J., & Kang, H. (2016). Can short-term constraint-induced movement therapy combined with visual biofeedback training improve hemiplegic upper limb function of subacute stroke patients?. *Annals of rehabilitation medicine*, *40*(6), 998.
- Sezer, N., Yavuzer, G., Sivrioglu, K., Basaran, P., & Koseoglu, B. F. (2007). Clinimetric properties of the Duruoz hand index in patients with stroke. Archives of physical medicine and rehabilitation, 88(3), 309-314.
- Shah, M. V., Kumar, S., & Muragod, A. R. (2016). Effect of constraint induced movement therapy v/s motor relearning program for upper extremity function in sub acute hemiparetic patients-a random
- Shaheiwola, N., Zhang, B., Jia, J., & Zhang, D. (2018). Using tDCS as an add-on treatment prior to FES therapy in improving upper limb function in severe chronic stroke patients: A randomized controlled study. Frontiers in human neuroscience, 12.
- Shaw, L. C., Price, C. I., van Wijck, F. M., Shackley, P., Steen, N., Barnes, M. P., ... & Rodgers, H. (2011). Botulinum Toxin for the Upper Limb after Stroke (BoTULS) Trial: effect on impairment, activity limitation, and pain. Stroke, 42(5), 1371-1379.

- Shaw, L., Rodgers, H., Price, C., van Wijck, F., Shackley, P., Steen, N., ... & Graham, L. (2010). BoTULS: a multicentre randomised controlled trial to evaluate the clinical effectiveness and cost-effectiveness of treating upper limb spasticity due to stroke with botulinum toxin type A. Health Technol Assess, 14(26), 1-113.
- Sheehy, L., Taillon Hobson, A., Sveistrup, H., Bilodeau, M., Yang, C., & Finestone, H. (2020). Sitting balance exercise performed using Virtual Reality training on a stroke rehabilitation inpatient service: A randomized controlled study. PM&R.
- Shim, S., & Jung, J. (2015). Effects of bilateral training on motor function, amount of activity and activity intensity measured with an accelerometer of patients with stroke. Journal of Physical Therapy Science, 27(3), 751-754.
- Shimodozono, M., Noma, T., Matsumoto, S., Miyata, R., Etoh, S., & Kawahira, K. (2014). Repetitive facilitative exercise under continuous electrical stimulation for severe arm impairment after sub-acute stroke: a randomized controlled pilot study. Brain injury, 28(2), 203-210.
- Shimodozono, M., Noma, T., Nomoto, Y., Hisamatsu, N., Kamada, K., Miyata, R., ... & Kawahira, K. (2013). Benefits of a repetitive facilitative exercise program for the upper paretic extremity after subacute stroke: A randomized controlled trial. Neurorehabilitation and neural repair, 27(4), 296-305.
- Shin, H. K., Cho, S. H., Jeon, H. S., Lee, Y. H., Song, J. C., Jang, S. H., ... & Kwon, Y. H. (2008). Cortical effect and functional recovery by the electromyography-triggered neuromuscular stimulation in chronic stroke patients. Neuroscience letters, 442(3), 174-179.
- Shin, J. H., Kim, M. Y., Lee, J. Y., Jeon, Y. J., Kim, S., Lee, S., ... & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. Journal of neuroengineering and rehabilitation, 13(1), 17.
- Shin, J. H., Park, S. B., & Jang, S. H. (2015). Effects of game-based virtual reality on health-related quality of life in chronic stroke patients: A randomized, controlled study. Computers in biology and medicine, 63, 92-98.
- Shindo, K., Fujiwara, T., Hara, J., Oba, H., Hotta, F., Tsuji, T., ... & Liu, M. (2011). Effectiveness of hybrid assistive neuromuscular dynamic stimulation therapy in patients with subacute stroke: a randomized controlled pilot trial. Neurorehabilitation and neural repair, 25(9), 830-837.
- Sicuri, C., Porcellini, G., & Merolla, G. (2014). Robotics in shoulder rehabilitation. Muscles, ligaments and tendons journal, 4(2), 207.
- Şik, B. Y., Dursun, N., Dursun, E., Sade, I., & Şahin, E. (2015). Transcranial Direct Current Stimulation: The Effects On Plegic Upper Extremity Motor Function of Patients With Stroke. Journal of Neurological Sciences, 32(2).
- Simondson, J. A., Goldie, P., & Greenwood, K. M. (2003). The mobility scale for acute stroke patients: concurrent validity. Clinical rehabilitation, 17(5), 558-564.
- Simpson, D. M., Alexander, D. N., O'brien, C. F., Tagliati, M., Aswad, A. S., Leon, J. M., ... & Monaghan, E. P. (1996). Botulinum toxin type A in the treatment of upper extremity spasticity: a randomized, double-blind, placebo-controlled trial. Neurology, 46(5), 1306-1306.

- Simpson, D. M., Gracies, J. M., Yablon, S. A., Barbano, R., Brashear, A., & BoNT/TZD Study Team. (2009). Botulinum neurotoxin versus tizanidine in upper limb spasticity: a placebocontrolled study. Journal of Neurology, Neurosurgery & Psychiatry, 80(4), 380-385.
- Şimşek, T. T., & Çekok, K. (2016). The effects of Nintendo WiiTM-based balance and upper extremity training on activities of daily living and quality of life in patients with sub-acute stroke: a randomized controlled study. International Journal of Neuroscience, 126(12), 1061-1070.
- Sin, H., & Lee, G. (2013). Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. American journal of physical medicine & rehabilitation, 92(10), 871-880.
- Singer, B. J., Vallence, A. M., Cleary, S., Cooper, I., & Loftus, A. M. (2013). The effect of EMG triggered electrical stimulation plus task practice on arm function in chronic stroke patients with moderate-severe arm deficits. Restorative neurology and neuroscience, 31(6), 681-691.
- Singh, H. P., Dias, J. J., & Thompson, J. R. (2015). Timed Sollerman hand function test for analysis of hand function in normal volunteers. Journal of Hand Surgery (European Volume), 40(3), 298-309.
- Skubik-Peplaski, C., Custer, M., Powell, E., Westgate, P. M., & Sawaki, L. (2017). Comparing occupation-based and repetitive task practice interventions for optimal stroke recovery: a pilot randomized trial. Physical & Occupational Therapy In Geriatrics, 35(3-4), 156-168.
- Smania, N., Gandolfi, M., Paolucci, S., Iosa, M., Ianes, P., Recchia, S., ... & Zaccala, M. (2012). Reduced-intensity modified constraint-induced movement therapy versus conventional therapy for upper extremity rehabilitation after stroke: a multicenter trial. Neurorehabilitation and neural repair, 26(9), 1035-1045.
- Smith, S. J., Ellis, E., White, S., & Moore, A. P. (2000). A double-blind placebo-controlled study of botulinum toxin in upper limb spasticity after stroke or head injury. Clinical rehabilitation, 14(1), 5-13.
- Snow, B. J., Tsui, J. K., Bhatt, M. H., Varelas, M., Hashimoto, S. A., & Calne, D. B. (1990). Treatment of spasticity with botulinum toxin: a double-blind study. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 28(4), 512-515.
- Sonde, L., Fernaeus, S. E., Nilsson, C. G., & Viitanen, M. (1998). Stimulation With Low Frequency (1.7 Hz) Transcutaneous Electric Nerve Stimulation (Low-Tens) Increases Motor. Scand J Rehab Med, 30, 95-99.
- Song, B. K., Han, S. Y., Jeong, J. W., & Kim, H. N. (2020). The Effect of Task-based upper Limb Training on Activities of Daily Living and Upper Limb Function in Chronic Stroke Patients. Medico Legal Update, 20(1), 2069-2073.
- Song, C. S., Lee, O. N., & Woo, H. S. (2019). Cognitive strategy on upper extremity function for stroke: A randomized controlled trials. Restorative neurology and neuroscience, 37(1), 61–70.
- Song, G. B. (2015). The effects of task-oriented versus repetitive bilateral arm training on upper limb function and activities of daily living in stroke patients. Journal of physical therapy science, 27(5), 1353-1355.

- Song, Y., Kang, L., Dong, H., & Chen, Y. (2016). Combined rehabilitation with scalp cluster acupuncture and constraint-induced movement therapy significantly improved functional recovery in patients with acute ischemic stroke. International Journal of Clinical and Experimental Medicine, 9(10), 19797-19802.
- Song, Y., Kang, L., Dong, H., & Chen, Y. (2016). Combined rehabilitation with scalp cluster acupuncture and constraint-induced movement therapy significantly improved functional recovery in patients with acute ischemic stroke. International Journal of Clinical and Experimental Medicine, 9(10), 19797-19802.
- Souza, W. C., Conforto, A. B., Orsini, M., Stern, A., & André, C. (2015). Similar effects of two modified constraint-induced therapy protocols on motor impairment, motor function and quality of life in patients with chronic stroke. Neurology international, 7(1).
- Stagg, C. J., Bachtiar, V., O'shea, J., Allman, C., Bosnell, R. A., Kischka, U., ... & Johansen-Berg, H. (2011). Cortical activation changes underlying stimulation-induced behavioural gains in chronic stroke. Brain, 135(1), 276-284.
- Standen, P. J., Threapleton, K., Richardson, A., Connell, L., Brown, D. J., Battersby, S., ... & Burton, A. (2017). A low cost virtual reality system for home based rehabilitation of the arm following stroke: a randomised controlled feasibility trial. Clinical rehabilitation, 31(3), 340-350.
- Stefanovic, A., & Schwirtlich, L. (2003). Clinical evaluation of functional electrical therapy in acute hemiplegic subjects. Journal of rehabilitation research and development, 40(5), 443-454.
- Stein, J., Hughes, R., D'Andrea, S., Therrien, B., Niemi, J., Krebs, K., ... & Harry, J. (2010). Stochastic resonance stimulation for upper limb rehabilitation poststroke. American journal of physical medicine & rehabilitation, 89(9), 697-705.
- Stein, J., Krebs, H. I., Frontera, W. R., Fasoli, S. E., Hughes, R., & Hogan, N. (2004). Comparison of two techniques of robot-aided upper limb exercise training after stroke. American journal of physical medicine & rehabilitation, 83(9), 720-728.
- Stein, J., Krebs, H. I., Frontera, W. R., Fasoli, S. E., Hughes, R., & Hogan, N. (2004). Comparison of two techniques of robot-aided upper limb exercise training after stroke. American journal of physical medicine & rehabilitation, 83(9), 720-728.
- Stern, E. B. (1992). Stability of the Jebsen-Taylor Hand Function Test across three test sessions. American journal of occupational therapy, 46(7), 647-649.
- Stewart, K. C., Cauraugh, J. H., & Summers, J. J. (2006). Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis. Journal of the neurological sciences, 244(1-2), 89-95.
- Stinear, C. M., Barber, P. A., Coxon, J. P., Fleming, M. K., & Byblow, W. D. (2008). Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain, 131(Pt 5), 1381-1390.
- Stinear, C. M., Petoe, M. A., Anwar, S., Barber, P. A., & Byblow, W. D. (2014). Bilateral Priming Accelerates Recovery of Upper Limb Function After Stroke A Randomized Controlled Trial. Stroke, 45(1), 205-210.

- Stoykov, M. E., Lewis, G. N., & Corcos, D. M. (2009). Comparison of bilateral and unilateral training for upper extremity hemiparesis in stroke. Neurorehabil Neural Repair., 23(9), 945-953.
- Straudi, S., Baroni, A., Mele, S., Craighero, L., Manfredini, F., Lamberti, N., ... & Basaglia, N. (2020). Effects of a robot-assisted arm training plus hand functional electrical stimulation on recovery after stroke: a randomized clinical trial. Archives of Physical Medicine and Rehabilitation, 101(2), 309-316.
- Straudi, S., Fregni, F., Martinuzzi, C., Pavarelli, C., Salvioli, S., & Basaglia, N. (2016). tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. BioMed research international, 2016.
- Street, A. J., Magee, W. L., Bateman, A., Parker, M., Odell-Miller, H., & Fachner, J. (2018). Home-based neurologic music therapy for arm hemiparesis following stroke: results from a pilot, feasibility randomized controlled trial. Clinical rehabilitation, 32(1), 18-28.
- Sturma, A., Hruby, L. A., Prahm, C., Mayer, J. A., & Aszmann, O. C. (2018). Rehabilitation of upper extremity nerve injuries using surface EMG biofeedback: Protocols for clinical application. Frontiers in neuroscience, 12, 906.
- Suat, E., İbrahim Engin, Ş., Nilgün, B., Yavuz, Y., & Fatma, U. (2011). Short-and long-term effects of an inhibitor hand splint in poststroke patients: a randomized controlled trial. Topics in stroke rehabilitation, 18(3), 231-237.
- Summers, J. J., Kagerer, F. A., Garry, M. I., Hiraga, C. Y., Loftus, A., & Cauraugh, J. H. (2007). Bilateral and unilateral movement training on upper limb function in chronic stroke patients: a TMS study. Journal of the neurological sciences, 252(1), 76-82.
- Sun, L., Yin, D., Zhu, Y., Fan, M., Zang, L., Wu, Y., ... & Hu, Y. (2013). Cortical reorganization after motor imagery training in chronic stroke patients with severe motor impairment: a longitudinal fMRI study. Neuroradiology, 55(7), 913-925.
- Sun, S. F., Hsu, C. W., Sun, H. P., Hwang, C. W., Yang, C. L., & Wang, J. L. (2010). Combined botulinum toxin type A with modified constraint-induced movement therapy for chronic stroke patients with upper extremity spasticity: a randomized controlled study. Neurorehabilitation and neural repair, 24(1), 34-41.
- Sunderland, A., Tinson, D., Bradley, L., & Hewer, R. L. (1989). Arm function after stroke. An evaluation of grip strength as a measure of recovery and a prognostic indicator. Journal of Neurology, Neurosurgery & Psychiatry, 52(11), 1267-1272.
- Sung, W. H., Wang, C. P., Chou, C. L., Chen, Y. C., Chang, Y. C., & Tsai, P. Y. (2013). Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. Stroke, 44(5), 1375-1382.
- Suputtitada, A., & Suwanwela, N. C. (2005). The lowest effective dose of botulinum A toxin in adult patients with upper limb spasticity. Disability and rehabilitation, 27(4), 176-184.
- Suputtitada, A., Suwanwela, N. C., & Tumvitee, S. (2004). Effectiveness of constraint-induced movement therapy in chronic stroke patients. J Med Assoc Thai, 87(12), 1482-90.

- Surrey, L. R., Nelson, K., Delelio, C., Mathie-Majors, D., Omel-Edwards, N., Shumaker, J., & Thurber, G. (2003). A comparison of performance outcomes between the Minnesota Rate of Manipulation Test and the Minnesota Manual Dexterity Test. Work, 20(2), 97-102.
- Susanto, E. A., Tong, R. K., Ockenfeld, C., & Ho, N. S. (2015). Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. Journal of neuroengineering and rehabilitation, 12(1), 42.
- Sutter, E. N., Mattlage, A. E., Bland, M. D., Cherry-Allen, K. M., Harrison, E., Surkar, S. M., ... & Lang, C. E. (2019). Remote limb ischemic conditioning and motor learning: evaluation of factors influencing response in older adults. Translational stroke research, 10(4), 362-371.
- Sze, F. K. H., Wong, E., Yi, X., & Woo, J. (2002). Does acupuncture have additional value to standard poststroke motor rehabilitation?. Stroke, 33(1), 186-194.
- Takahashi, C. D., Der-Yeghiaian, L., Le, V., Motiwala, R. R., & Cramer, S. C. (2008). Robot-based hand motor therapy after stroke. Brain, 131(2), 425-437.
- Takahashi, K., Domen, K., Sakamoto, T., Toshima, M., Otaka, Y., Seto, M., ... & Hachisuka, K. (2016). Efficacy of upper extremity robotic therapy in subacute poststroke hemiplegia: an exploratory randomized trial. Stroke, 47(5), 1385-1388.
- Takebayashi, T., Koyama, T., Amano, S., Hanada, K., Tabusadani, M., Hosomi, M., ... & Domen, K. (2013). A 6-month follow-up after constraint-induced movement therapy with and without transfer package for patients with hemiparesis after stroke: a pilot quasi-randomized controlled trial. Clinical rehabilitation, 27(5), 418-426.
- Takebayashi, T., Takahashi, K., Domen, K., & Hachisuka, K. (2020). Impact of initial flexor synergy pattern scores on improving upper extremity function in stroke patients treated with adjunct robotic rehabilitation: A randomized clinical trial. Topics in Stroke Rehabilitation, 1-9.
- Takebayashi, T., Takahashi, K., Moriwaki, M., Sakamoto, T., & Domen, K. (2017). Improvement of upper extremity deficit after constraint-induced movement therapy combined with and without preconditioning stimulation using dual-hemisphere transcranial direct current stimulation and peripheral neuromuscular stimulation in chronic stroke patients: A pilot randomized controlled trial. Frontiers in neurology, 8, 568.
- Takeuchi, N., Chuma, T., Matsuo, Y., Watanabe, I., & Ikoma, K. (2005). Repetitive transcranial magnetic stimulation of contralesional primary motor cortex improves hand function after stroke. Stroke, 36(12), 2681-2686.
- Takeuchi, N., Tada, T., Toshima, M., Chuma, T., Matsuo, Y., & Ikoma, K. (2008). Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. Journal of Rehabilitation Medicine, 40(4), 298-303.
- Takeuchi, N., Tada, T., Toshima, M., Matsuo, Y., & Ikoma, K. (2009). Repetitive transcranial magnetic stimulation over bilateral hemispheres enhances motor function and training effect of paretic hand in patients after stroke. Journal of rehabilitation medicine, 41(13), 1049-1054.
- Talelli, P., Wallace, A., Dileone, M., Hoad, D., Cheeran, B., Oliver, R., ... & Musumeci, G. (2012). Theta burst stimulation in the rehabilitation of the upper limb: a semirandomized,

placebo-controlled trial in chronic stroke patients. Neurorehabilitation and neural repair, 26(8), 976-987.

Tambasco, N., Romoli, M., & Calabresi, P. (2018). Levodopa in Parkinson's disease: current status and future developments. Current neuropharmacology, 16(8), 1239-1252.

Tanaka, S., Takeda, K., Otaka, Y., Kita, K., Osu, R., Honda, M., ... & Watanabe, K. (2011). Single session of transcranial direct current stimulation transiently increases knee extensor force in patients with hemiparetic stroke. Neurorehabilitation and neural repair, 25(6), 565-569.

Tardy, J., Pariente, J., Leger, A., Dechaumont-Palacin, S., Gerdelat, A., Guiraud, V., ... & Cognard, C. (2006). Methylphenidate modulates cerebral post-stroke reorganization. Neuroimage, 33(3), 913-922.

Tariah, H. A., Almalty, A. M., Sbeih, Z., & Al-Oraibi, S. (2010). Constraint induced movement therapy for stroke survivors in Jordon: a home-based model. International Journal of Therapy and Rehabilitation, 17(12), 638-646.

Tarri, M., Brimhat, N., Gasq, D., Lepage, B., Loubinoux, I., De Boissezon, X., ... & Castel-Lacanal, E. (2018). Five-day course of paired associative stimulation fails to improve motor function in stroke patients. Annals of physical and rehabilitation medicine, 61(2), 78-84.

Taub, E., Uswatte, G., Mark, V. W., Morris, D. M., Barman, J., Bowman, M. H., ... & Bishop-McKay, S. (2013). Method for enhancing real-world use of a more affected arm in chronic stroke: transfer package of constraint-induced movement therapy. Stroke, 44(5), 1383-1388.

Taveggia, G., Borboni, A., Salvi, L., Mule, C., Fogliaresi, S., Villafañe, J. H., & Casale, R. (2016). Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: a randomized controlled study. European journal of physical and rehabilitation medicine, 52(6), 767-773.

Tavernese, E., Paoloni, M., Mangone, M., Mandic, V., Sale, P., Franceschini, M., & Santilli, V. (2013). Segmental muscle vibration improves reaching movement in patients with chronic stroke. A randomized controlled trial. NeuroRehabilitation, 32(3), 591-599.

Tekeolu, Y. B., Adak, B., & Göksoy, T. (1998). Effect of transcutaneous electrical nerve stimulation (TENS) on Barthel Activities of Daily Living (ADL) index score following stroke. Clinical rehabilitation, 12(4), 277-280.

Teoli D, An J. Transcutaneous Electrical Nerve Stimulation (TENS) [Updated 2019 Jan 6]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2018 Jan-. Available from: https://www-ncbi-nlm-nih-gov.proxy1.lib.uwo.ca/books/NBK537188

Thanakiatpinyo, T., Suwannatrai, S., Suwannatrai, U., Khumkaew, P., Wiwattamongkol, D., Vannabhum, M., ... & Kuptniratsaikul, V. (2014). The efficacy of traditional Thai massage in decreasing spasticity in elderly stroke patients. Clinical interventions in aging, 9, 1311.

Thanakiatpinyo, T., Suwannatrai, S., Suwannatrai, U., Khumkaew, P., Wiwattamongkol, D., Vannabhum, M., ... & Kuptniratsaikul, V. (2014). The efficacy of traditional Thai massage in decreasing spasticity in elderly stroke patients. Clinical interventions in aging, 9, 1311.

- Thibaut, A., Chatelle, C., Ziegler, E., Bruno, M. A., Laureys, S., & Gosseries, O. (2013). Spasticity after stroke: physiology, assessment and treatment. Brain injury, 27(10), 1093-1105.
- Thielbar, K. O., Lord, T. J., Fischer, H. C., Lazzaro, E. C., Barth, K. C., Stoykov, M. E., ... & Kamper, D. G. (2014). Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke. Journal of neuroengineering and rehabilitation, 11(1), 171.
- Thielbar, K. O., Triandafilou, K. M., Barry, A. J., Yuan, N., Nishimoto, A., Johnson, J., ... & Kamper, D. G. (2020). Home-based Upper Extremity Stroke Therapy Using a Multiuser Virtual Reality Environment: A Randomized Trial. Archives of physical medicine and rehabilitation, 101(2), 196-203.
- Thielman, G. (2010). Rehabilitation of reaching poststroke: a randomized pilot investigation of tactile versus auditory feedback for trunk control. Journal of Neurologic Physical Therapy, 34(3), 138-144.
- Thielman, G. (2013). Insights into upper limb kinematics and trunk control one year after task-related training in chronic post-stroke individuals. Journal of Hand Therapy, 26(2), 156-161.
- Thielman, G. T., Dean, C. M., & Gentile, A. M. (2004). Rehabilitation of reaching after stroke: task-related training versus progressive resistive exercise. Archives of physical medicine and rehabilitation, 85(10), 1613-1618.
- Thielman, G., & Bonsall, P. (2012). Rehabilitation of the upper extremity after stroke: a case series evaluating REO therapy and an auditory sensor feedback for trunk control. Stroke research and treatment, 2012.
- Thieme, H., Bayn, M., Wurg, M., Zange, C., Pohl, M., & Behrens, J. (2013). Mirror therapy for patients with severe arm paresis after stroke—a randomized controlled trial. Clinical rehabilitation, 27(4), 314-324.
- Thompson-Butel, A. G., Lin, G. G., Shiner, C. T., & McNulty, P. A. (2014). Two common tests of dexterity can stratify upper limb motor function after stroke. Neurorehabilitation and neural repair, 28(8), 788-796.
- Thrane, G., Askim, T., Stock, R., Indredavik, B., Gjone, R., Erichsen, A., & Anke, A. (2015). Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabilitation and neural repair, 29(6), 517-525.
- Thrasher, T. A., Zivanovic, V., McIlroy, W., & Popovic, M. R. (2008). Rehabilitation of reaching and grasping function in severe hemiplegic patients using functional electrical stimulation therapy. Neurorehabilitation and neural repair, 22(6), 706-714.
- Tilkici, M., Alemdaroglu, E., Mandiroglu, S., Ordu Gokkaya N., Ucan, H., Aykan, S. (2017). The Effect of Upper Extremity Electrical Stimulation in Addition to Conventional Rehabilitation in Individuals with Chronic Stroke: Randomized Controlled Study. Journal of physical medicine and rehabilitation sciences, 20(3), 126-133.
- Timmermans, A. A., Lemmens, R. J., Monfrance, M., Geers, R. P., Bakx, W., Smeets, R. J., & Seelen, H. A. (2014). Effects of task-oriented robot training on arm function, activity, and quality

of life in chronic stroke patients: a randomized controlled trial. Journal of neuroengineering and rehabilitation, 11(1), 45.

Timmermans, A. A., Verbunt, J. A., van Woerden, R., Moennekens, M., Pernot, D. H., & Seelen, H. A. (2013). Effect of mental practice on the improvement of function and daily activity performance of the upper extremity in patients with subacute stroke: a randomized clinical trial. Journal of the American Medical Directors Association, 14(3), 204-212.

Tomić, T. J. D., Savić, A. M., Vidaković, A. S., Rodić, S. Z., Isaković, M. S., Rodríguez-de-Pablo, C., ... & Konstantinović, L. M. (2017). ArmAssist robotic system versus matched conventional therapy for poststroke upper limb rehabilitation: a randomized clinical trial. BioMed research international, 2017.

Tomljanović, M., Spasić, M., Gabrilo, G., Uljević, O., & Foretić, N. (2011). Effects of five weeks of functional vs. traditional resistance training on anthropometric and motor performance variables. Kinesiology: International journal of fundamental and applied kinesiology, 43(2), 145-154.

Tong, Y., Forreider, B., Sun, X., Geng, X., Zhang, W., Du, H., ... & Ding, Y. (2015). Music-supported therapy (MST) in improving post-stroke patients' upper-limb motor function: a randomised controlled pilot study. Neurological research, 37(5), 434-440.

Toscano, M., Celletti, C., Viganò, A., Altarocca, A., Giuliani, G., Jannini, T. B., ... & Altieri, M. (2019). Short-term effects of focal muscle vibration on motor recovery after acute stroke: a pilot randomized sham-controlled study. Frontiers in neurology, 10, 115.

Tosun, A., Türe, S., Askin, A., Yardimci, E. U., Demirdal, S. U., Kurt Incesu, T., ... & Gelal, F. M. (2017). Effects of low-frequency repetitive transcranial magnetic stimulation and neuromuscular electrical stimulation on upper extremity motor recovery in the early period after stroke: a preliminary study. Topics in stroke rehabilitation, 24(5), 361-367.

Treger, I., Aidinof, L., Lehrer, H., & Kalichman, L. (2012). Modified constraint-induced movement therapy improved upper limb function in subacute poststroke patients: a small-scale clinical trial. Topics in stroke rehabilitation, 19(4), 287-293.

Triccas, L. T., Burridge, J. H., Hughes, A., Verheyden, G., Desikan, M., & Rothwell, J. (2015). A double-blinded randomised controlled trial exploring the effect of anodal transcranial direct current stimulation and uni-lateral robot therapy for the impaired upper limb in sub-acute and chronic stroke. NeuroRehabilitation, 37(2), 181-191.

Trombly, C. A., Thayer-Nason, L., Bliss, G., Girard, C. A., Lyrist, L. A., & Brexa-Hooson, A. (1986). The effectiveness of therapy in improving finger extension in stroke patients. American Journal of Occupational Therapy, 40(9), 612-617.

Tseng, C. N., Chen, C. C. H., Wu, S. C., & Lin, L. C. (2007). Effects of a range-of-motion exercise programme. Journal of Advanced Nursing, 57(2), 181-191.

Tsubokawa, T., Katayama, Y., Yamamoto, T., Hirayama, T., & Koyama, S. (1991). Treatment of thalamic pain by chronic motor cortex stimulation. Pacing and Clinical Electrophysiology, 14(1), 131-134.

- Türkbey, T. A., Kutlay, Ş., & Gök, H. (2017). Clinical feasibility of Xbox KinectTM training for stroke rehabilitation: a single-blind randomized controlled pilot study. Journal of rehabilitation medicine, 49(1), 22-29.
- Turton, A. J., & Britton, E. (2005). A pilot randomized controlled trial of a daily muscle stretch regime to prevent contractures in the arm after stroke. Clinical Rehabilitation, 19(6), 600-612.
- Tyson, S., Wilkinson, J., Thomas, N., Selles, R., McCabe, C., Tyrrell, P., & Vail, A. (2015). Phase II pragmatic randomized controlled trial of patient-led therapies (mirror therapy and lower-limb exercises) during inpatient stroke rehabilitation. Neurorehabilitation and neural repair, 29(9), 818-826.
- Umar, M., Masood, T., & Badshah, M. (2018). Effect of botulinum toxin A & task-specific training on upper limb function in post-stroke focal dystonia. JPMA. The Journal of the Pakistan Medical Association, 68(4), 526-531.
- Underwood, J., Clark, P. C., Blanton, S., Aycock, D. M., & Wolf, S. L. (2006). Pain, fatigue, and intensity of practice in people with stroke who are receiving constraint-induced movement therapy. Physical therapy, 86(9), 1241-1250.
- Valles, K. B., Montes, S., de Jesus Madrigal, M., Burciaga, A., Martínez, M. E., & Johnson, M. J. (2016). Technology-assisted stroke rehabilitation in Mexico: a pilot randomized trial comparing traditional therapy to circuit training in a Robot/technology-assisted therapy gym. Journal of neuroengineering and rehabilitation, 13(1), 83.
- van de Winckel, A., Feys, H., Lincoln, N., & De Weerdt, W. (2007). Assessment of arm function in stroke patients: Rivermead Motor Assessment arm section revised with Rasch analysis. Clinical rehabilitation, 21(5), 471-479.
- van Delden, A. E. Q., Beek, P. J., Roerdink, M., Kwakkel, G., & Peper, C. E. (2015). Unilateral and Bilateral Upper-Limb Training Interventions After Stroke Have Similar Effects on Bimanual Coupling Strength. Neurorehabilitation and Neural Repair, 29(3), 255-267.
- van Delden, A. E. Q., Peper, C. E., Nienhuys, K. N., Zijp, N. I., Beek, P. J., & Kwakkel, G. (2013). Unilateral Versus Bilateral Upper Limb Training After Stroke The Upper Limb Training After Stroke Clinical Trial. Stroke, 44(9), 2613-2616.
- van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Devillé, W. L., & Bouter, L. M. (1999). Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke, 30(11), 2369-2375.
- van der Lee, J. H., Wagenaar, R. C., Lankhorst, G. J., Vogelaar, T. W., Devillé, W. L., & Bouter, L. M. (1999). Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke, 30(11), 2369–2375.
- van Dokkum, L. E. H., Ward, T., & Laffont, I. (2015). Brain computer interfaces for neurorehabilitation—its current status as a rehabilitation strategy post-stroke. Annals of physical and rehabilitation medicine, 58(1), 3-8.
- Van Peppen, R. P., Kwakkel, G., Wood-Dauphinee, S., Hendriks, H. J., Van der Wees, P. J., & Dekker, J. (2004). The impact of physical therapy on functional outcomes after stroke: what's the evidence?. Clinical rehabilitation, 18(8), 833-862.

- van Vliet, P. M., Lincoln, N. B., & Foxall, A. (2005). Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial. Journal of Neurology, Neurosurgery & Psychiatry, 76(4), 503-508.
- van Vliet, P. M., Lincoln, N. B., & Foxall, A. (2005). Comparison of Bobath based and movement science based treatment for stroke: a randomised controlled trial. Journal of neurology, neurosurgery, and psychiatry, 76(4), 503–508.
- Van Vugt, F. T., Ritter, J., Rollnik, J. D., & Altenmüller, E. (2014). Music-supported motor training after stroke reveals no superiority of synchronization in group therapy. Frontiers in human neuroscience, 8, 315.
- van Wijck, F., Knox, D., Dodds, C., Cassidy, G., Alexander, G., & MacDonald, R. (2012). Making music after stroke: using musical activities to enhance arm function. Annals of the New York Academy of Sciences, 1252(1), 305-311.
- Vanoglio, F., Bernocchi, P., Mulè, C., Garofali, F., Mora, C., Taveggia, G., ... & Luisa, A. (2017). Feasibility and efficacy of a robotic device for hand rehabilitation in hemiplegic stroke patients: a randomized pilot controlled study. Clinical rehabilitation, 31(3), 351-360.ac
- Veldman, M. P., Zijdewind, I., Solnik, S., Maffiuletti, N. A., Berghuis, K. M. M., Javet, M., ... & Hortobágyi, T. (2015). Direct and crossed effects of somatosensory electrical stimulation on motor learning and neuronal plasticity in humans. European journal of applied physiology, 115(12), 2505-2519.
- Viana, R. T., Laurentino, G. E. C., Souza, R. J. P., Fonseca, J. B., Silva Filho, E. M., Dias, S. N., ... & Monte-Silva, K. K. (2014). Effects of the addition of transcranial direct current stimulation to virtual reality therapy after stroke: a pilot randomized controlled trial. NeuroRehabilitation, 34(3), 437-446.
- Villafañe, J. H., Taveggia, G., Galeri, S., Bissolotti, L., Mullè, C., Imperio, G., ... & Negrini, S. (2018). Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial. Hand, 13(1), 95-102.
- Villán-Villán, M. A., Pérez-Rodríguez, R., Martín, C., Sánchez-González, P., Soriano, I., Opisso, E., ... & Gómez, E. J. (2018). Objective motor assessment for personalized rehabilitation of upper extremity in brain injury patients. NeuroRehabilitation, (Preprint), 1-11.
- Volpe, B. T., Ferraro, M., Lynch, D., Christos, P., Krol, J., Trudell, C., ... & Hogan, N. (2005). Robotics and other devices in the treatment of patients recovering from stroke. Current neurology and neuroscience reports, 5(6), 465-470.
- Volpe, B. T., Krebs, H. I., Hogan, N., Edelstein, L., Diels, C., & Aisen, M. (2000). A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology, 54(10), 1938-1944.
- Volpe, B. T., Krebs, H. I., Hogan, N., Edelsteinn, L., Diels, C. M., & Aisen, M. L. (1999). Robot training enhanced motor outcome in patients with stroke maintained over 3 years. Neurology, 53(8), 1874-1874.
- Volpe, B. T., Lynch, D., Rykman-Berland, A., Ferraro, M., Galgano, M., Hogan, N., & Krebs, H. I. (2008). Intensive sensorimotor arm training mediated by therapist or robot improves

- hemiparesis in patients with chronic stroke. Neurorehabilitation and Neural Repair, 22(3), 305-310.
- Volz, L. J., Rehme, A. K., Michely, J., Nettekoven, C., Eickhoff, S. B., Fink, G. R., & Grefkes, C. (2016). Shaping early reorganization of neural networks promotes motor function after stroke. Cerebral cortex, 26(6), 2882-2894.
- Vural, S. P., Yuzer, G. F. N., Ozcan, D. S., Ozbudak, S. D., & Ozgirgin, N. (2016). Effects of mirror therapy in stroke patients with complex regional pain syndrome type 1: a randomized controlled study. Archives of physical medicine and rehabilitation, 97(4), 575-581.
- Waddell, K. J., Strube, M. J., Bailey, R. R., Klaesner, J. W., Birkenmeier, R. L., Dromerick, A. W., & Lang, C. E. (2017). Does task-specific training improve upper limb performance in daily life poststroke?. Neurorehabilitation and neural repair, 31(3), 290-300.
- Wagner, T. H., Lo, A. C., Peduzzi, P., Bravata, D. M., Huang, G. D., Krebs, H. I., ... & Wittenberg, G. F. (2011). An economic analysis of robot-assisted therapy for long-term upper-limb impairment after stroke. Stroke, 42(9), 2630-2632.
- Walker, M. F., Sunderland, A., Fletcher-Smith, J., Drummond, A., Logan, P., Edmans, J. A., . . . Taylor, J. L. (2012). The DRESS trial: A feasibility randomized controlled trial of a neuropsychological approach to dressing therapy for stroke inpatients. Clinical Rehabilitation, 26(8), 675-685.
- Wallace, A. C., Talelli, P., Crook, L., Austin, D., Farrell, R., Hoad, D., ... & Rothwell, J. C. (2020). Exploratory Randomized Double-Blind Placebo-Controlled Trial of Botulinum Therapy on Grasp Release After Stroke (PrOMBiS). Neurorehabilitation and Neural Repair, 34(1), 51-60.
- Waller, S. M., Liu, W., & Whitall, J. (2008). Temporal and spatial control following bilateral versus unilateral training. Human movement science, 27(5), 749-758.
- Wang, C. C., Wang, C. P., Tsai, P. Y., Hsieh, C. Y., Chan, R. C., & Yeh, S. C. (2014). Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. Restorative neurology and neuroscience, 32(6), 825-835.
- Wang, H. Q., Hou, M., He, L., Bao, C. L., Min, L., Dong, G. R., & Jiao, Z. H. (2020). Effects of acupuncture treatment on motor function in patients with subacute hemorrhagic stroke: A randomized controlled study. Complementary Therapies in Medicine, 102296.
- Wang, H., Zhang, C., Gao, C., Zhu, S., Yang, L., Wei, Q., & He, C. (2017). Effects of short-wave therapy in patients with knee osteoarthritis: a systematic review and meta-analysis. Clinical rehabilitation, 31(5), 660-671.
- Wang, J., Yu, P., Zeng, M., Gu, X., Liu, Y., & Xiao, M. (2017). Reduction in spasticity in stroke patient with paraffin therapy. Neurological research, 39(1), 36-44.
- Wang, M., Li, Y., Li, L., Huang, H., Huang, L., Ni, Y., ... & Wang, X. (2017). Secondary prevention for improvements in limb hemiplegia after stroke. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, 10(6), 9370-9375.

- Wang, M., Liu, S., Peng, Z., Zhu, Y., Feng, X., Gu, Y., ... & Hu, J. (2019). Effect of Tui Na on upper limb spasticity after stroke: a randomized clinical trial. Annals of clinical and translational neurology, 6(4), 778-787.
- Wang, M., Liu, S., Peng, Z., Zhu, Y., Feng, X., Gu, Y., ... & Hu, J. (2019). Tibetan Medicated Bathing Therapy for Patients With Post-stroke Limb Spasticity: A Randomized Controlled Clinical Trial. Journal of the American Medical Directors Association.
- Wang, Q. M., Cui, H., Han, S. J., Black-Schaffer, R., Volz, M. S., Lee, Y. T., ... & Fregni, F. (2014). Combination of transcranial direct current stimulation and methylphenidate in subacute stroke. Neuroscience letters, 569, 6-11.
- Wang, Q., Zhao, J. L., Zhu, Q. X., Li, J., & Meng, P. P. (2011). Comparison of conventional therapy, intensive therapy and modified constraint-induced movement therapy to improve upper extremity function after stroke. Journal of rehabilitation medicine, 43(7), 619-625.
- Wang, T., Wang, X., Wang, H., He, X., Su, J., Zhu, Y., & Dong, Y. (2007). Effects of ULEM apparatus on motor function of patients with stroke. Brain injury, 21(11), 1203-1208.
- Wang, W. W., Xie, C. L., Lu, L., & Zheng, G. Q. (2014). A systematic review and meta-analysis of Baihui (GV20)-based scalp acupuncture in experimental ischemic stroke. *Scientific reports*, *4*, 3981.
- Wang, X., Wang, H., Xiong, X., Sun, C., Zhu, B., Xu, Y., ... & Guo, X. (2020). Motor Imagery Training After Stroke Increases Slow-5 Oscillations and Functional Connectivity in the Ipsilesional Inferior Parietal Lobule. Neurorehabilitation and Neural Repair, 34(4), 321-332.
- Wang, X., Wong, W. W., Sun, R., Chu, W. C. W., & Tong, K. Y. (2018). Differentiated effects of robot hand training with and without neural guidance on neuroplasticity patterns in chronic stroke. Frontiers in neurology, 9, 810.
- Wang, Y. C., Wickstrom, R., Yen, S. C., Kapellusch, J., & Grogan, K. A. (2018). Assessing manual dexterity: Comparing the WorkAbility Rate of Manipulation Test with the Minnesota Manual Dexterity Test. Journal of Hand Therapy, 31(3), 339-347.
- Ward, A. B., Wissel, J., Borg, J., Ertzgaard, P., Herrmann, C., Kulkarni, J., ... & Sharma, S. (2014). Functional goal achievement in post-stroke spasticity patients: the BOTOX® Economic Spasticity Trial (BEST). Journal of rehabilitation medicine, 46(6), 504-513.
- Ward, A., Carrico, C., Powell, E., Westgate, P. M., Nichols, L., Fleischer, A., & Sawaki, L. (2017). Safety and improvement of movement function after stroke with atomoxetine: A pilot randomized trial. Restorative neurology and neuroscience, 35(1), 1-10.
- Ward, N. S., Brander, F., & Kelly, K. (2018). Intensive upper limb neurorehabilitation in chronic stroke: outcomes from the Queen Square programme. J Neurol Neurosurg Psychiatry, jnnp-2018.
- Watanabe, K., Kudo, Y., Sugawara, E., Nakamizo, T., Amari, K., Takahashi, K., ... & Johkura, K. (2018). Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction. Journal of the neurological sciences, 384, 10-14.

- Watkins, C. L., Leathley, M. J., Gregson, J. M., Moore, A. P., Smith, T. L., & Sharma, A. K. (2002). Prevalence of spasticity post stroke. Clinical rehabilitation, 16(5), 515-522.
- Wayne, P. M., Krebs, D. E., Macklin, E. A., Schnyer, R., Kaptchuk, T. J., Parker, S. W., ... & Stason, W. B. (2005). Acupuncture for upper-extremity rehabilitation in chronic stroke: a randomized sham-controlled study. *Archives of physical medicine and rehabilitation*, *86*(12), 2248-2255.
- Weber, D. J., Skidmore, E. R., Niyonkuru, C., Chang, C. L., Huber, L. M., & Munin, M. C. (2010). Cyclic functional electrical stimulation does not enhance gains in hand grasp function when used as an adjunct to onabotulinumtoxinA and task practice therapy: a single-blind, randomized controlled pilot study. Archives of physical medicine and rehabilitation, 91(5), 679-686.
- Wei, X. J., Tong, K. Y., & Hu, X. L. (2011). The responsiveness and correlation between Fugl-Meyer Assessment, Motor Status Scale, and the Action Research Arm Test in chronic stroke with upper-extremity rehabilitation robotic training. International Journal of Rehabilitation Research, 34(4), 349-356.
- Wei, X., Wang, S., Li, L., & Zhu, L. (2017). Clinical evidence of chinese massage therapy (Tui Na) for cervical radiculopathy: a systematic review and meta-analysis. Evidence-Based Complementary and Alternative Medicine, 2017.
- Wei, Y. H., Du, D. C., & Jiang, K. (2019). Therapeutic efficacy of acupuncture combined with neuromuscular joint facilitation in treatment of hemiplegic shoulder pain. World Journal of Clinical Cases, 7(23), 3964.
- Wei, Y. X., Zhao, X., & Zhang, B. C. (2016). Synergistic effect of moxibustion and rehabilitation training in functional recovery of post-stroke spastic hemiplegia. Complementary therapies in medicine, 26, 55-60.
- Weimar, C., Konig, I. R., Kraywinkel, K., Ziegler, A., & Diener, H. C. (2004). Age and National Institutes of Health Stroke Scale Score within 6 hours after onset are accurate predictors of outcome after cerebral ischemia: development and external validation of prognostic models. Stroke, 35(1), 158-162.
- Welfringer, A., Leifert-Fiebach, G., Babinsky, R., & Brandt, T. (2011). Visuomotor imagery as a new tool in the rehabilitation of neglect: a randomised controlled study of feasibility and efficacy. Disability and Rehabilitation, 33(21-22), 2033-2043.
- Whitall, J., Waller, S. M., Silver, K. H., & Macko, R. F. (2000). Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke. Stroke, 31(10), 2390-2395.
- Whitall, J., Waller, S. M., Sorkin, J. D., Forrester, L. W., Macko, R. F., Hanley, D. F., Goldberg, A. P., & Luft, A. (2011). Bilateral and unilateral arm training improve motor function through differing neuroplastic mechanisms: a single-blinded randomized controlled trial. Neurorehabil.Neural Repair, 25(2), 118-129.

- Willigenburg, N. W., McNally, M. P., Hewett, T. E., & Page, S. J. (2017). Portable myoelectric brace use increases upper extremity recovery and participation but does not impact kinematics in chronic, poststroke hemiparesis. Journal of motor behavior, 49(1), 46-54.
- Wilson, D. J., Baker, L. L., & Craddock, J. A. (1984). Functional test for the hemiparetic upper extremity. The American Journal of Occupational Therapy, 38(3), 159-164.
- Wilson, J. L., Hareendran, A., Grant, M., Baird, T., Schulz, U. G., Muir, K. W., & Bone, I. (2002). Improving the assessment of outcomes in stroke: use of a structured interview to assign grades on the modified Rankin Scale. Stroke, 33(9), 2243-2246.
- Wilson, R. D., Page, S. J., Delahanty, M., Knutson, J. S., Gunzler, D. D., Sheffler, L. R., & Chae, J. (2016). Upper-limb recovery after stroke: a randomized controlled trial comparing EMG-triggered, cyclic, and sensory electrical stimulation. Neurorehabilitation and neural repair, 30(10), 978-987.
- Winstein, C. J., Rose, D. K., & Chui, H. C. (2001). Recovery and rehabilitation of arm use after stroke. J Stroke Cerebrovasc Dis, 10(4), 197.
- Winstein, C. J., Rose, D. K., Tan, S. M., Lewthwaite, R., Chui, H. C., & Azen, S. P. (2004). A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Archives of physical medicine and rehabilitation, 85(4), 620-628.
- Winstein, C. J., Wolf, S. L., Dromerick, A. W., Lane, C. J., Nelsen, M. A., Lewthwaite, R., ... & Azen, S. P. (2016). Effect of a task-oriented rehabilitation program on upper extremity recovery following motor stroke: the ICARE randomized clinical trial. Jama, 315(6), 571-581.
- Wissel, J., Ganapathy, V., Ward, A. B., Borg, J., Ertzgaard, P., Herrmann, C., ... & Fulford-Smith, A. (2016). OnabotulinumtoxinA improves pain in patients with post-stroke spasticity: findings from a randomized, double-blind, placebo-controlled trial. Journal of pain and symptom management, 52(1), 17-26.
- Wittenberg, G. F., Chen, R., Ishii, K., Bushara, K. O., Taub, E., Gerber, L. H., ... & Cohen, L. G. (2003). Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabilitation and neural repair, 17(1), 48-57.
- Wittich, W., & Nadon, C. (2017). The Purdue Pegboard test: normative data for older adults with low vision. Disability and Rehabilitation: Assistive Technology, 12(3), 272-279.
- Wolf, S. L., Catlin, P. A., Blanton, S., Edelman, J., Lehrer, N., & Schroeder, D. (1994). Overcoming limitations in elbow movement in the presence of antagonist hyperactivity. Physical Therapy, 74(9), 826-835.
- Wolf, S. L., Catlin, P. A., Ellis, M., Archer, A. L., Morgan, B., & Piacentino, A. (2001). Assessing Wolf motor function test as outcome measure for research in patients after stroke. Stroke, 32(7), 1635-1639.
- Wolf, S. L., Milton, S. B., Reiss, A., Easley, K. A., Shenvi, N. V., & Clark, P. C. (2012). Further assessment to determine the additive effect of botulinum toxin type A on an upper extremity exercise program to enhance function among individuals with chronic stroke but extensor capability. Archives of physical medicine and rehabilitation, 93(4), 578-587.

- Wolf, S. L., Sahu, K., Bay, R. C., Buchanan, S., Reiss, A., Linder, S., ... & Alberts, J. (2015). The HAAPI (Home Arm Assistance Progression Initiative) trial: a novel robotics delivery approach in stroke rehabilitation. Neurorehabilitation and neural repair, 29(10), 958-968.
- Wolf, S. L., Thompson, P. A., Morris, D. M., Rose, D. K., Winstein, C. J., Taub, E., ... & Pearson, S. L. (2005). The EXCITE trial: attributes of the Wolf Motor Function Test in patients with subacute stroke. Neurorehabilitation and neural repair, 19(3), 194-205.
- Wolf, S. L., Thompson, P. A., Winstein, C. J., Miller, J. P., Blanton, S. R., Nichols-Larsen, D. S., ... & Sawaki, L. (2010). The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke, 41(10), 2309-2315.
- Wolf, S. L., Winstein, C. J., Miller, J. P., Taub, E., Uswatte, G., Morris, D., ... & Excite Investigators. (2006). Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. Jama, 296(17), 2095-2104.
- Wolf, S. L., Winstein, C. J., Miller, J. P., Thompson, P. A., Taub, E., Uswatte, G., ... & Clark, P. C. (2008). Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomised trial. *The Lancet Neurology*, 7(1), 33-40.
- Wolny, T., Saulicz, E., Gnat, R., & Kokosz, M. (2010). Butler's neuromobilizations combined with proprioceptive neuromuscular facilitation are effective in reducing of upper limb sensory in late-stage stroke subjects: a three-group randomized trial. Clinical rehabilitation, 24(9), 810-821.
- Woodbury, M. L., Howland, D. R., McGuirk, T. E., Davis, S. B., Senesac, C. R., Kautz, S., & Richards, L. G. (2009). Effects of trunk restraint combined with intensive task practice on poststroke upper extremity reach and function: a pilot study. Neurorehabilitation and Neural Repair, 23(1), 78-91.
- Wu, C. W., Seo, H. J., & Cohen, L. G. (2006). Influence of electric somatosensory stimulation on paretic-hand function in chronic stroke. Archives of physical medicine and rehabilitation, 87(3), 351-357.
- Wu, C. Y., Chen, C. L., Tang, S. F., Lin, K. C., & Huang, Y. Y. (2007). Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 88(8), 964-970.
- Wu, C. Y., Chen, C. L., Tsai, W. C., Lin, K. C., & Chou, S. H. (2007). A randomized controlled trial of modified constraint-induced movement therapy for elderly stroke survivors: changes in motor impairment, daily functioning, and quality of life. Archives of Physical Medicine and Rehabilitation, 88(3), 273-278.
- Wu, C. Y., Chen, Y. A., Chen, H. C., Lin, K. C., & Yeh, I. L. (2012). Pilot trial of distributed constraint-induced therapy with trunk restraint to improve poststroke reach to grasp and trunk kinematics. Neurorehabilitation and neural repair, 26(3), 247-255.
- Wu, C. Y., Chen, Y. A., Lin, K. C., Chao, C. P., & Chen, Y. T. (2012). Constraint-induced therapy with trunk restraint for improving functional outcomes and trunk-arm control after stroke: a randomized controlled trial. *Physical therapy*, *92*(4), 483-492.

- Wu, C. Y., Chuang, L. L., Lin, K. C., Chen, H. C., & Tsay, P. K. (2011). Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabilitation and neural repair, 25(2), 130-139.
- Wu, C. Y., Huang, P. C., Chen, Y. T., Lin, K. C., & Yang, H. W. (2013). Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 94(6), 1023-1030.
- Wu, C. Y., Lin, K. C., Chen, H. C., Chen, I. H., & Hong, W. H. (2007). Effects of modified constraint-induced movement therapy on movement kinematics and daily function in patients with stroke: a kinematic study of motor control mechanisms. Neurorehabilitation and neural repair, 21(5), 460-466.
- Wu, C. Y., Yang, C. L., Chen, M., Lin, K. C., & Wu, L. L. (2013). Unilateral versus bilateral robot-assisted rehabilitation on arm-trunk control and functions post stroke: a randomized controlled trial. Journal of NeuroEngineering and Rehabilitation, 10, 35.
- Wu, D., Qian, L., Zorowitz, R. D., Zhang, L., Qu, Y., & Yuan, Y. (2013). Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. Archives of physical medicine and rehabilitation, 94(1), 1-8.
- Wu, H. C., Lin, Y. C., Hsu, M. J., Liu, S. M., Hsieh, C. L., & Lin, J. H. (2010). Effect of thermal stimulation on upper extremity motor recovery 3 months after stroke. Stroke, 41(10), 2378-2380.
- Wu, M. T., Sheen, J. M., Chuang, K. H., Yang, P., Chin, S. L., Tsai, C. Y., ... & Pan, H. B. (2002). Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage, 16(4), 1028-1037.
- Wu, Y. T., Yu, H. K., Chen, L. R., Chang, C. N., Chen, Y. M., & Hu, G. C. (2018). Extracorporeal shock waves versus botulinum toxin type A in the treatment of poststroke upper limb spasticity: a randomized noninferiority trial. Archives of physical medicine and rehabilitation, 99(11), 2143-2150.
- Yadav, R. K., Sharma, R., Borah, D., & Kothari, S. Y. (2016). Efficacy of modified constraint induced movement therapy in the treatment of hemiparetic upper limb in stroke patients: a randomized controlled trial. Journal of clinical and diagnostic research: JCDR, 10(11), YC01.
- Yamada, N., Kakuda, W., Kondo, T., Mitani, S., Shimizu, M., & Abo, M. (2014). Local muscle injection of botulinum toxin type a synergistically improves the beneficial effects of repetitive transcranial magnetic stimulation and intensive occupational therapy in post-stroke patients with spastic upper limb hemiparesis. European neurology, 72(5-6), 290-298.
- Yang CL, L. K., Chen HC, Wu CY, Chen CL. (2012). Pilot comparative study of unilateral and bilateral robot-assisted training on upper-extremity performance in patients with stroke. Am J Occup Ther., 66(2), 198-206.
- Yang, N. Y., Fong, K. N., Li-Tsang, C. W., & Zhou, D. (2017). Effects of repetitive transcranial magnetic stimulation combined with sensory cueing on unilateral neglect in subacute patients with right hemispheric stroke: a randomized controlled study. Clinical rehabilitation, 31(9), 1154-1163.

- Yang, S. Y., Lin, C. Y., Lee, Y. C., & Chang, J. H. (2017). The Canadian occupational performance measure for patients with stroke: a systematic review. Journal of physical therapy science, 29(3), 548-555.
- Yang, Y. J., Zhang, J., Hou, Y., Jiang, B. Y., Pan, H. F., Wang, J., ... & Cheng, J. (2017). Effectiveness and safety of Chinese massage therapy (Tui Na) on post-stroke spasticity: a prospective multicenter randomized controlled trial. Clinical rehabilitation, 31(7), 904-912.
- Yang, Y. J., Zhang, J., Hou, Y., Jiang, B. Y., Pan, H. F., Wang, J., ... & Cheng, J. (2017). Effectiveness and safety of Chinese massage therapy (Tui Na) on post-stroke spasticity: a prospective multicenter randomized controlled trial. Clinical rehabilitation, 31(7), 904-912.
- Yang, Y., Eisner, I., Chen, S., Wang, S., Zhang, F., & Wang, L. (2017). Neuroplasticity changes on human motor cortex induced by acupuncture therapy: a preliminary study. Neural plasticity, 2017.
- Yao, W. J., & Ouyang, B. S. (2014). Effect of relaxing needling plus rehabilitation training on post-stroke upper limb dysfunction. Journal of Acupuncture and Tuina Science, 12(3), 146-149.
- Yasar, E., Vural, D., Safaz, I., Balaban, B., Yilmaz, B., Goktepe, A. S., & Alaca, R. (2011). Which treatment approach is better for hemiplegic shoulder pain in stroke patients: intra-articular steroid or suprascapular nerve block? A randomized controlled trial. Clinical rehabilitation, 25(1), 60-68.
- Yavuzer, G., Selles, R., Sezer, N., Sütbeyaz, S., Bussmann, J. B., Köseoğlu, F., ... & Stam, H. J. (2008). Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Archives of physical medicine and rehabilitation, 89(3), 393-398.
- Yavuzer, G., Senel, A., Atay, M. B., & Stam, H. J. (2008). "Playstation eyetoy games"improve upper extremity-related motor functioning in subacute stroke: a randomized controlled clinical trial. *European journal of physical and rehabilitation medicine*, *44*(3), 237-244.
- Yen, J. G., Wang, R. Y., Chen, H. H., & Hong, C. T. (2005). Effectiveness of modified constraint-induced movement therapy on upper limb function in stroke subjects. Acta Neurol Taiwan, 14(1), 16-20.
- Yoon, J. A., Koo, B. I., Shin, M. J., Shin, Y. B., Ko, H. Y., & Shin, Y. I. (2014). Effect of constraint-induced movement therapy and mirror therapy for patients with subacute stroke. Annals of rehabilitation medicine, 38(4), 458.
- Yoon, S. H., Shin, M. K., Choi, E. J., & Kang, H. J. (2017). Effective site for the application of extracorporeal shock-wave therapy on spasticity in chronic stroke: muscle belly or myotendinous junction. Annals of rehabilitation medicine, 41(4), 547.
- You, S. J., & Lee, J. H. (2013). Effects of mental activity training linked with electromyogram-triggered electrical stimulation on paretic upper extremity motor function in chronic stroke patients: a pilot trial/Kronik felcli hastalarda paretik ust ekstremite motor fonksiyonlari uzerinde elektromiyografi ile tetiklenen elektrik stimulasyonu esliginde mental aktivite egitiminin etkileri: pilot calisma. Turkish Journal of Physical Medicine and Rehabilitation, 59(2), 133-140.

- You, Y. Y., Her, J. G., Woo, J. H., Ko, T., & Chung, S. H. (2014). The effects of stretching and stabilization exercise on the improvement of spastic shoulder function in hemiplegic patients. Journal of physical therapy science, 26(4), 491-495.
- Yu, C., Wang, W., Zhang, Y., Wang, Y., Hou, W., Liu, S., ... & Wu, J. (2017). The effects of modified constraint-induced movement therapy in acute subcortical cerebral infarction. Frontiers in human neuroscience, 11, 265.
- Yue, S., Jiang, X., & Wong, T. (2013). Effects of a nurse-led acupressure programme for stroke patients in China. Journal of clinical nursing, 22(7-8), 1182-1188.
- Yue, Z., Zhang, X., & Wang, J. (2017). Hand rehabilitation robotics on poststroke motor recovery. Behavioural neurology, 2017.
- Yun, G. J., Chun, M. H., Park, J. Y., & Kim, B. R. (2011). The synergic effects of mirror therapy and neuromuscular electrical stimulation for hand function in stroke patients. Annals of rehabilitation medicine, 35(3), 316.
- Yuzer, G. F. N., Dönmez, B. K., & Özgirgin, N. (2017). A Randomized Controlled Study: Effectiveness of Functional Electrical Stimulation on Wrist and Finger Flexor Spasticity in Hemiplegia. Journal of Stroke and Cerebrovascular Diseases, 26(7), 1467-1471.
- Zeuner, K. E., Knutzen, A., Kühl, C., Möller, B., Hellriegel, H., Margraf, N. G., ... & Stolze, H. (2017). Functional impact of different muscle localization techniques for Botulinum neurotoxin A injections in clinical routine management of post-stroke spasticity. *Brain injury*, 31(1), 75-82.
- Zhang, J., Mu, X., Breker, D. A., Li, Y., Gao, Z., & Huang, Y. (2017). Atorvastatin treatment is associated with increased BDNF level and improved functional recovery after atherothrombotic stroke. International Journal of Neuroscience, 127(1), 92-97.
- Zhang, L., Xing, G., Fan, Y., Guo, Z., Chen, H., & Mu, Q. (2017). Short-and long-term effects of repetitive transcranial magnetic stimulation on upper limb motor function after stroke: a systematic review and meta-analysis. Clinical rehabilitation, 31(9), 1137-1153.
- Zhang, Y., Al-Aref, R., Fu, H., Yang, Y., Feng, Y., Zhao, C., ... & Sun, G. (2017). Neuronavigation-Assisted Aspiration and Electro-Acupuncture for Hypertensive Putaminal Hemorrhage: A Suitable Technique on Hemiplegia Rehabilitation. Turk Neurosurg, 27(4), 500-508.
- Zhang, Y., Cai, J., Zhang, Y., Ren, T., Zhao, M., & Zhao, Q. (2016). Improvement in stroke-induced motor dysfunction by music-supported therapy: a systematic review and meta-analysis. Scientific reports, 6, 38521.
- Zhang, Y., Cai, J., Zhang, Y., Ren, T., Zhao, M., & Zhao, Q. (2016). Improvement in stroke-induced motor dysfunction by music-supported therapy: a systematic review and meta-analysis. Scientific reports, 6, 38521.
- Zhang, Y., Liu, G. C., Wang, J. Y., Sun, Y. G., & Yang, L. J. (2013). Clinical observation on acupuncture treatment for post-stroke spastic hemiplegia. Journal of Acupuncture and Tuina Science, 11(4), 230-234.

- Zhao, J. G., Cao, C. H., Liu, C. Z., Han, B. J., Zhang, J., Li, Z. G., ... & Xu, Z. H. (2009). Effect of acupuncture treatment on spastic states of stroke patients. Journal of the neurological sciences, 276(1-2), 143-147.
- Zhao, N., Zhang, J., Qiu, M., Wang, C., Xiang, Y., Wang, H., ... & Wu, J. (2018). Scalp acupuncture plus low-frequency rTMS promotes repair of brain white matter tracts in stroke patients: A DTI study. Journal of integrative neuroscience, 17(1), 125-139.
- Zhao, W., Wang, C., Li, Z., Chen, L., Li, J., Cui, W., ... & Xiao, S. (2015). Efficacy and safety of transcutaneous electrical acupoint stimulation to treat muscle spasticity following brain injury: a double-blinded, multicenter, randomized controlled trial. PLoS One, 10(2), e0116976.
- Zheng, C. J., Liao, W. J., & Xia, W. G. (2015). Effect of combined low-frequency repetitive transcranial magnetic stimulation and virtual reality training on upper limb function in subacute stroke: a double-blind randomized controlled trail. Journal of Huazhong University of Science and Technology [Medical Sciences], 35(2), 248-254.
- Zheng, Y., Liu, G., Yu, L., Wang, Y., Fang, Y., Shen, Y., ... & Hua, Z. (2020). Effects of a 3D-printed orthosis compared to a low-temperature thermoplastic plate orthosis on wrist flexor spasticity in chronic hemiparetic stroke patients: a randomized controlled trial. Clinical Rehabilitation, 34(2), 194-204.
- Zheng, Y., Mao, M., Cao, Y., & Lu, X. (2019). Contralaterally controlled functional electrical stimulation improves wrist dorsiflexion and upper limb function in patients with early-phase stroke: A randomized controlled trial. Journal of rehabilitation medicine, 51(2), 103-108.
- Zhou, Y. X., Xia, Y., Huang, J., Wang, H. P., Bao, X. L., Bi, Z. Y., ... & Wang, Z. G. (2017). Electromyographic bridge for promoting the recovery of hand movements in subacute stroke patients: A randomized controlled trial. Journal of rehabilitation medicine, 49(8), 629-636.
- Zhu, M. H., Wang, J., Gu, X. D., Shi, M. F., Zeng, M., Wang, C. Y., ... & Fu, J. M. (2015). Effect of action observation therapy on daily activities and motor recovery in stroke patients. International Journal of Nursing Sciences, 2(3), 279-282.
- Zhu, M. H., Zeng, M., Shi, M. F., Gu, X. D., Shen, F., Zheng, Y. P., & Jia, Y. P. (2020). Visual feedback therapy for restoration of upper limb function of stroke patients. International Journal of Nursing Sciences.
- Zhuang, L. X., Xu, S. F., D'Adamo, C. R., Jia, C., He, J., Han, D. X., & Lao, L. X. (2012). An Effectiveness Study Comparing Acupuncture, Physiotherapy, and Their Combination in Poststroke Rehabifitation: A Multicentered, Randomized, Controlled Clinical Trial. Alternative Therapies in Health & Medicine, 18(3).
- Zimerman, M., Heise, K. F., Hoppe, J., Cohen, L. G., Gerloff, C., & Hummel, F. C. (2012). Modulation of training by single-session transcranial direct current stimulation to the intact motor cortex enhances motor skill acquisition of the paretic hand. Stroke, 43(8), 2185-2191.
- Zittel, S., Weiller, C., & Liepert, J. (2007). Reboxetine improves motor function in chronic stroke. Journal of neurology, 254(2), 197-201.
- Zittel, S., Weiller, C., & Liepert, J. (2008). Citalopram improves dexterity in chronic stroke patients. Neurorehabilitation and neural repair, 22(3), 311-314.

Zondervan, D. K., Augsburger, R., Bodenhoefer, B., Friedman, N., Reinkensmeyer, D. J., & Cramer, S. C. (2015). Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke: a randomized controlled trial. Neurorehabilitation and neural repair, 29(5), 395-406.

Zondervan, D. K., Friedman, N., Chang, E., Zhao, X., Augsburger, R., Reinkensmeyer, D. J., & Cramer, S. C. (2016). Home-based hand rehabilitation after chronic stroke: Randomized, controlled single-blind trial comparing the MusicGlove with a conventional exercise program. Journal of Rehabilitation Research & Development, 53(4).